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Abstract
In this project, we develop a topic on the Bootstrap and Jackknife methods. There
is a real data set regarding Boston housing prices whose distribution is non-normal.
When we want to fit a multiple linear regression model from the data, normality
assumption should be satisfied. In this case, the Bootstrap method can be used
to overcome problems of unknown sampling distributions. By using the Bootstrap
method, we can find point estimators of coefficients of the fitted linear model and
the 95% confidence intervals for the coefficients. Furthermore, we can perform the
same work by using the Jackknife method. Based on the results, we can compare
Bootstrap with Jackknife.

Keywords: Non-parametirc Bootstrap, Case Resampling, Residual Resampling,
Jackknife, Boston Housing Data, Mutiple Linear Regression, Least Squared Regres-
sion Line

1 Instructions

1.1 Data Set

Here is an explanation with more details about the data set we want to use. The
Boston Housing data give information about housing values of Boston from D. Har-
rison and D.L. Rubenfeld (1978)’s article titled, ”Hedonic Prices and the Demand
for Clean Air”, Journal of Environmental Economics and Management 5, 81–102.
This data set is available in R, MASS package, and the sample size is n = 506. There
are 5 predictors from the original data set: nitrogen oxides concentration (nox), av-
erage number of room per house (rm), weighted mean of distances to 5 employment
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centers (dis), student-teacher ratio by town (ptratio), and lower status of the pop-
ulation in percentage (lstat). The response variable (medv) is the median value of
owner-occupied properties in $1, 000. As the data set includes 5 regressors, using
those regressors, we can regress the price of house in the Boston area.

1.2 Our Goal and Procedure

There is Boston Housing Data whose sample size is n = 506. For each observation,
there are 5 factors which might explain the Boston’s housing price. Using this data,
we can fit the least squared line to estimate mean value of medv , price of Boston’s
house, as follows;

medv = β0 + β1nox+ β2rm+ β3dis+ β4ptratio+ β5lstat+ ε

where nox, rm, dis, ptratio and lstat are predictors. Suppose the above model roughly
satisfies the normality assumption. Then, point estimators for coefficients and 95%
confidence interval(CI) for them can be investigated.

However, note that this model does not completely satisfy the normality assump-
tion. Since this model is a non-parametric model, non-parametric Bootstrap method
can be performed to overcome this problem. After conducting Bootstrap methods,
we can have six point estimators for β0, β1, β2, β3, β4 and β5 and 95% CIs for them.
Similarly, Jackknife methods can be used to do the above same work. As a result,
we have three results for six estimators and 95% CIs for those parameters in each
method. Based on the results, there are possible questions that will be discussed.
What are the results of t-test, Bootstrap and Jackknife? More specifically, can we
convince that resampling methods are good enough to assess the accuracy? How
can Jackknife be considered as an approximate to Bootstrap? Does the original data
set of sample size n = 506 make Jackknife more computational intensive? More
specifically, can smaller sample size, for example n = 25, work better?

2 Methods

2.1 Bootstrapping Regression

There are two ways of bootstrapping for a regression model. One is based on re-
sampling from the original data, and the other is a residual resampling given fixed-x
bootstrap procedure. We fit a regression model with the Boston housing median
value as the response variable y and predictors nox, rm, dis, ptratio, and lstat. We
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used more than two packages of R for bootstrapping. bootstrap package (Efron,
B., Tibshirani, R. J., 1993), and boot package (Davison, A. C., Hinkley, D. V, 1997)
are associated with the subject. Boot with a capital “B” is a function in the car

package (John Fox, Sanford Weisberg, 2016) in the MASS package, while the function
boot in the boot package is also used.

2.1.1 Random x or Case Resampling

This Bootstrap method is to deal with predictors as random. Random sample x re-
sampling is clearly case resampling of n = 506 observations z′i = (yi, xi1, xi2, . . . , xi5), i =
1, . . . , n under which the Bootstrap data are

z
′∗
i = (yi, xi1, xi2, . . . , xi5)

∗, i = 1, . . . , n

taken independently with equal probabilities n−1 from the z′i = (yi, xi1, xi2, . . . , xi5), i =
1, . . . , n. The function boot in the boot library takes several arguments.

• data: The data as a vector, matrix or data frame. If it is a matrix or data
frame, each row is considered as one multivariate observation

• statistic: A function which when applied to data returns a vector containing
the statistic(s) of interest.

• R: The number of Bootstrap replicates. Usually this will be a single positive
integer.

We also use the boot.ci function to get an confidence interval on each regression
coefficient of 95% level of Normal, Percentile, and BCa methods.

2.1.2 Fixed-x resampling residuals

This is model-based re-sampling in linear regression and from obtained fitted values
Xβ̂, we take εbi randomly from centered standardized residuals e1, . . . , en and set

ybi = Xβ + εbi , i = 1, . . . , n

Therefore, we can rewrite this as the fixed Ŷ and resample the residuals e, to get

Yb = Ŷ + eb
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We refer to residual resampling method for Boot is slightly modified from this, by
using modified residuals ei/

√
1− hii, Thus,

ri =
ei√

1− hii
− r̄

where, hii is the i -leverage in hat-matrix value for the i the observation. (Davison,
A. C., Hinkley, D. V, 1997) (John Fox, 2011)

2.1.3 Comparing residuals between t-test and Bootstrap methods

In order to check if the resampling method, Bootstrap can give us more accuracy
than t-test method can do, we will check the distribution of residuals. Let y = medv.
From each method, we had two fitted line,

ŷ = β̂0 + β̂1nox+ β̂2rm+ β̂3dis+ β̂4ptratio+ β̂5lstat,

ŷb = β̂0
b

+ β̂1
b
nox+ β̂2

b
rm+ β̂3

b
dis+ β̂4

b
ptratio+ β̂5

b
lstat,

where β̂i
b

is point estimator of βi using Bootstrap. When we use the t-test method,
residuals can be written as ei = yi− ŷ and when we use the Bootstrap, residuals can
be written as ebi = yi − ŷb. The difference between a distribution of ei and ebi can be
seen from the plot between residuals and fitted values and normal qq-plot.

2.2 Jackknife Regression

Similar to the Bootstrap method, Jackknife methods can be used to find point es-
timators and 95% CIs for coefficients. We need to use a package bootstrap and a
function jackknife from the R. In addition, in order to check whether a smaller sam-
ple size is better or not, we will compare the case when n = 25 with the original case
when n = 506. For each sample size, using Jackknife like before, point estimators
for coefficients and estimate of standard error for coefficients will be calculated.

3 Results

Following our methods, for each method, we found the point estimators of coeffi-
cients, β̂i, the estimated standard errors of the point estimators of coefficients, ŝe(β̂i)
and 95% CIs of coefficients. When we use t-test and Bootstrap methods, the result
for the β̂i, ŝe(β̂i) can be shown in Table 1 and the 95% CIs for βi can be shown in
Table 2. In addition, when we use the Jackknife method, we could get each result
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displayed in Table 3 and Table 4 respectively. The tables we explained are as follows;

Table 1: β̂i and ŝe(β̂i) in each method

Origin. Data Bootstrap

Coefficients Estimate Standard Error
Estimate Standard Error

Random-x Fixed-x Random-x Fixed-x
β0 37.50 4.63 37.78 37.61 6.15 4.52

nox -17.00 3.26 -17.90 -17.15 3.26 3.27
rm 4.16 0.41 4.14 4.17 0.72 0.41
dis -1.18 0.17 -1.19 -1.19 0.18 0.17
pr -1.05 0.11 -1.05 -1.05 0.11 0.11
ls -0.58 0.48 -0.58 -0.58 0.09 0.05

Table 2: 95% CIs for βi in each method

Coef. Orig. Data
Bootstrap-Random-x Fixed-x

Norm. Perc. BCa BCa
β0 (28.44, 46.56) (25.73, 49.82) (24.94, 49.21) (25.84, 50.32) (28.28, 46.59)

nox (-24.40, -11.59) (-24.49, -11.70) (-24.26, -11.27) (-24.54, -11.80) (-24.11, -11.10)
rm (3.35, 4.97) (2.72, 5.56) (2.77, 5.57) (2.65, 5.45) (3.37, 4.97)
dis (-1.52, -0.85) (-1.55, -0.83) (-1.57, -0.84) (-1.58, -0.85) (-1.51, -0.86)
pr (-1.27, -0.82) (-1.27, -0.83) (-1.26, -0.81) (-1.26, -0.81) (-1.29, -0.82)
ls (-0.68, -0.49) (-0.75, -0.41) (-0.75, -0.42) (-0.76, -0.42) (-0.67, -0.49)
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Table 3: β̂i and ŝe(β̂i) of Jackknife method

Jackknife

Coefficients
Estimate Standard Error

n = 25 n = 506 n = 25 n = 506
β0 19.86 37.81 22.57 6.35

nox -16.35 -18.00 20.91 3.29
rm 7.07 4.13 3.45 0.75
dis -0.31 -1.187 0.92 0.19
pr -1.49 -1.0469 0.77 0.12
ls -0.54 -0.58 0.27 0.09

Table 4: 95% CIs for βi of Jackknife method

Jackknife
Coefficients n = 25 n = 506

β0 (-27.99, 60.69) (25.01, 49.98)
nox (-53.50,28.64) (-24.46, -11.53)
rm (0.15,14.06) (2.68, 5.64)
dis (-1.96, 1.66) (-1.55, -0.82)
pr (-2.97, 0.05) -1.28, -0.81)
ls (-1.04,0.00) (-0.76, -0.40)
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3.1 Discussion from Results : Bootstrap

In this section, we can answer these following questions; What are the results of
t-test, Bootstrap and Jackknife? More specifically, can we convince that resampling
methods are good enough to assess the accuracy?

From the Table 1, when we consider the sign of β̂i, the estimate of mean medv,
which is response variable of the model, has the negative relationship with the vari-
ables of nox, dis, pr and ls and the positive relationship with rm variable in both
methods, t-test and Bootstrap. Also, the level of coefficients between the original
sample value and the bootstrap estimates of both the random x resampling and the
fixed-x residual resampling methods are very close as shown in the result Table 1.
We can observe the method of the fixed-x residual resampling turns out very close
values of on the standard errors of each coefficients of4.52, 3.27, 0.41, 0.17, 0.11 and
0.05 to the standard errors of the original sample values of 4.63.3.26, 0.41, 0.17, 0.11
and 0.48, intercept, nox, m, dis, pr and ls respectively. The bootstrap can be used
to produce approximate confidence intervals in an automatic way. boot.ci function
provides confidence intervals using three methods which are Normal, Percentile and
BCa for the regression models. From Boot function, we can also find confidence
interval for the fixed-x residual bootstrap method. In our median housing price of
Boston model, we can observe both of fixed- x and residual resampling method has
very similar confidence interval with the before one, for example, 95% CI’s for β0,
(28.44, 46.56) and (28.28,46.59), which are the original sample confidence interval
and the fixed-x residual resampling respectively.

Particularly, the fixed-x residual resampling claims by force the assumption that
the errors are identically distributed by resampling residuals from the distribution.
It means that unusual observations are not carried over into the resampled data sets
for the fixed-x residual resampling. So, in the case of the model which is not satisfied
with the normal assumption, or the case the existence of non-constant error variance,
or outliers, the fixed-x residual resampling will be preferred. (John Fox, 2011)

For now, we could compare the result between the methods of original data and
with resampling method, Bootstrap. From the Table 1 and 2, the values of β̂i between
those methods are very similar, for example,

βoriginal = (37.5,−17.0, 4.16,−1.18,−1.05,−0.58)T and

βb = (37.78,−17.9, 4.14,−1.19,−1.05,−0.58)T

are quite similar. Then, can we say that the resampling method is better to get
accuracy? Even though they look very similar, we can consider residual plot and
normal qq-plot to check if there is any difference between two methods. From the
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Figure 1: Residual plot and Normal qq-plot

Figure 1, there is no large difference between them when considering residual plot
and normal qq-plot. However, when we see the normal qq-plot, even though both of
them are skewed to the right, we can find the normal qq-plot of Bootstrap is slightly
closer to the normal. Therefore, the fitted line of the Bootstrap is slightly better
than the line without resampling method.

3.2 Discussion from Results : Jackknife

From the Table 1 and Table 3, when n = 506, we can see that the value of β̂i are
similar between Bootstrap and Jackknife methods. For example,

βb = (37.78,−17.9, 4.14,−1.19,−1.05,−0.58)Tand

βJ = (37.81,−18, 4.13,−1.187,−1.0469,−0.58)T

are quite similar. Based on this result, we can say that Jacknife can be considered
as an approximation of Bootstrap.

From the Jackknife method, all of estimate standard error for coefficients, ŝe(β̂i)
under the n = 25 are much larger than those under the n = 506. For instance, ŝe(β̂1)
of n = 25, the estimate of standard error for β̂1, which is 20.91, is 6 times larger
than ŝe(β̂1) of n = 506, which is 6.35. Furthermore, even though we don’t know
the exact value of β0, β1, · · ·, β5 of the population, when n = 25, point estimators
of coefficient which came from the Jackknife method is too far from the those of
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original data model. We can assume the distribution of original data is not too
much different from that of population because a sample size is not too small even
though we don’t know the shape of distribution of population. Then, the above
result indicates that when we use Jackknife method if n is smaller, Jackknife method
does not work well because when n = 25, the output is too much different than the
output of the original data. In other words, we can conclude that unless n is large,
Jackknife is less computationally intensive.

4 Further Study

The essential point of the resampling is how we can hold the relationship between
the selection of the original sample from the population and the selection of each
Bootstrap sample form the original sample. One of the benefits from the Bootstrap
or Jackknife is that it can provide correct statistic inferences. From this rigorous
method, Davison and Hinkley (Davison, A. C., Hinkley, D. V, 1997) developed the
hypothesis test in the regression context. However, because testing using the Boot-
strap or Jackknife is potentially complex, we leave this method for further discussion.
Another study can be in use of Boot package for the generalized linear models (GLM),
because Boot doesn’t allow to use method="residual" for GLM. (Davison, A. C.,
Hinkley, D. V, 1997). We may leave for further discussion and try to build a new R

function for GLM.

5 R codes

This is a R code for finding least squared regression line.

library(MASS)

> data(Boston)

> nox<-Boston[,5]

> rm<-Boston[,6]

> dis<-Boston[,8]

> pr<-Boston[,11]

> ls<-Boston[,13]

> medv<-Boston[,14]

> data.boston<- data.frame(medv, nox, rm, dis, pr, ls)

>

> lm.boston<-lm(medv~nox+rm+dis+pr+ls,data=data.boston)
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> summary(lm.boston)

Call:

lm(formula = medv ~ nox + rm + dis + pr + ls, data = data.boston)

Residuals:

Min 1Q Median 3Q Max

-12.7765 -3.0186 -0.6481 1.9752 27.7625

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.49920 4.61295 8.129 3.43e-15 ***

nox -17.99657 3.26095 -5.519 5.49e-08 ***

rm 4.16331 0.41203 10.104 < 2e-16 ***

dis -1.18466 0.16842 -7.034 6.64e-12 ***

pr -1.04577 0.11352 -9.212 < 2e-16 ***

ls -0.58108 0.04794 -12.122 < 2e-16 ***

Residual standard error: 4.994 on 500 degrees of freedom

Multiple R-squared: 0.7081,Adjusted R-squared: 0.7052

F-statistic: 242.6 on 5 and 500 DF, p-value: < 2.2e-16

This is a R code for the Bootstrap method.

> boot.huber<-function(data,indices,maxit=20){

+ data<-data[indices,]

+ mod<-lm(medv~nox+rm+dis+pr+ls,data=data, maxit=maxit)

+ coefficients(mod)

+ }

>

> library(boot)

> boston.boot<-boot(data.boston, boot.huber,1999,maxit=100)

There were 50 or more warnings (use warnings() to see the first 50)

> boston.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
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boot(data = data.boston, statistic = boot.huber, R = 1999, maxit = 100)

Bootstrap Statistics :

original bias std. error

t1* 37.4991961 -0.277448662 6.14628473

t2* -17.9965715 0.097974099 3.26387578

t3* 4.1633074 0.022944043 0.72419450

t4* -1.1846623 0.002925215 0.18363489

t5* -1.0457738 0.003852122 0.11415168

t6* -0.5810836 -0.001905865 0.08705555

>

> ci.b0<-boot.ci(boston.boot,index=1,type=c("norm","perc","bca"))

> ci.nox<-boot.ci(boston.boot,index=2,type=c("norm","perc","bca"))

> ci.rm<-boot.ci(boston.boot,index=3,type=c("norm","perc","bca"))

> ci.dis<-boot.ci(boston.boot,index=4,type=c("norm","perc","bca"))

> ci.pr<-boot.ci(boston.boot,index=5,type=c("norm","perc","bca"))

> ci.ls<-boot.ci(boston.boot,index=6,type=c("norm","perc","bca"))

> normal.ci<-cbind(c(ci.b0$normal), c(ci.nox$normal),c(ci.rm$normal),

c(ci.dis$normal),c(ci.pr$normal),c(ci.ls$normal))

> rownames(normal.ci) <- c("Level.Normal","Lower","Upper")

> colnames(normal.ci) <- c( "B0","B1","B2","B3","B4","B5")

> print(normal.ci)

B0 B1 B2 B3 B4 B5

Level.Normal 0.95000 0.95000 0.950000 0.9500000 0.9500000 0.9500000

Lower 25.73015 -24.49162 2.720968 -1.5475053 -1.2733591 -0.7498035

Upper 49.82314 -11.69747 5.559758 -0.8276697 -0.8258928 -0.4085520

>

> perc.ci<-cbind(c(ci.b0$percent),c(ci.nox$percent),c(ci.rm$percent),

c(ci.dis$percent),c(ci.pr$percent),c(ci.ls$percent))[-c(2,3),]

> rownames(perc.ci) <- c("Level.Percent","Lower","Upper")

> colnames(perc.ci) <- c( "B0","B1","B2","B3","B4","B5")

> print(perc.ci)

B0 B1 B2 B3 B4 B5

Level.Percent 0.95000 0.95000 0.950000 0.9500000 0.9500000 0.9500000

Lower 24.94099 -24.26457 2.773954 -1.5655196 -1.2593001 -0.7490329

Upper 49.21359 -11.27481 5.570935 -0.8355352 -0.8064689 -0.4161756

> bca.ci<-cbind(c(ci.b0$bca), c(ci.nox$bca),c(ci.rm$bca),c(ci.dis$bca),
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c(ci.pr$bca),c(ci.ls$bca))[-c(2,3),]

> rownames(bca.ci) <- c("Level.BCa","Lower","Upper")

> colnames(bca.ci) <- c( "B0","B1","B2","B3","B4","B5")

> print(bca.ci)

B0 B1 B2 B3 B4 B5

Level.BCa 0.95000 0.95000 0.950000 0.9500000 0.9500000 0.9500000

Lower 25.84048 -24.54421 2.650669 -1.5838713 -1.2599990 -0.7563293

Upper 50.32128 -11.80295 5.453341 -0.8531867 -0.8081859 -0.4224423

#. Bootstrap that resamples the residuals instead of the whole observations can

also be used.

> library(car)

> summary(duncan.fix.boot<-Boot(lm.boston,R=1999,method="residual"))

R original bootBias bootSE bootMed

(Intercept) 1999 37.49920 -0.1046049 4.521593 37.48841

nox 1999 -17.99657 0.1526540 3.269043 -17.94022

rm 1999 4.16331 -0.0023713 0.410380 4.16111

dis 1999 -1.18466 0.0046584 0.167546 -1.18416

pr 1999 -1.04577 0.0020244 0.114007 -1.04517

ls 1999 -0.58108 -0.0016091 0.047706 -0.58302

> confint(duncan.fix.boot)

Bootstrap quantiles, type = bca

2.5 % 97.5 %

(Intercept) 28.2762510 46.5859385

nox -24.1145012 -11.0985037

rm 3.3749515 4.9654761

dis -1.5114378 -0.8609910

pr -1.2861148 -0.8234678

ls -0.6743186 -0.4897070

#.

> data.boston1<-data.frame(nox,rm,dis,pr,ls)

> N1<- c(-17.9942628,4.1101246,-1.1865082,-1.0446642,-0.5851452)

>

> f<-function(x)

+ {x*N1}
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> X<-t(apply(data.boston1,1,f))

> f1<- function(x)

+ {sum(x)+37.8956220}

> X1 <- apply(X, 1, f1)

> plot(X1,data.boston$medv-X1)

> qqnorm(data.boston$medv-X1)

This is a R code for the Jackknife method.

> library(MASS)

> nox <- Boston[,5]

> rm <- Boston[,6]

> dis <- Boston[,8]

> pr <- Boston[,11]

> ls <- Boston[,13]

> medv <- Boston[,14]

>

> Boss<-cbind(medv,nox,rm,dis,pr,ls)

> B<-cbind(1:506, Boss)

> data <- B[,1]

>

> f.nox<- function(x){

+ model<-lm(B[x,2]~B[x,3]+B[x,4]+B[x,5]+B[x,6]+B[x,7])

+ model$coefficient[2]}

>

> f.rm<- function(x){

+ model<-lm(B[x,2]~B[x,3]+B[x,4]+B[x,5]+B[x,6]+B[x,7])

+ model$coefficient[3]}

>

> f.dis<- function(x){

+ model<-lm(B[x,2]~B[x,3]+B[x,4]+B[x,5]+B[x,6]+B[x,7])

+ model$coefficient[4]}

>

> f.pr<- function(x){

+ model<-lm(B[x,2]~B[x,3]+B[x,4]+B[x,5]+B[x,6]+B[x,7])

+ model$coefficient[5]}

>

> f.ls<- function(x){

+ model<-lm(B[x,2]~B[x,3]+B[x,4]+B[x,5]+B[x,6]+B[x,7])

13



+ model$coefficient[6]}

>

> f.b0<- function(x){

+ model<-lm(B[x,2]~B[x,3]+B[x,4]+B[x,5]+B[x,6]+B[x,7])

+ model$coefficient[1]}

>

> library(bootstrap)

> myjack.f <- function(x){

+ jack.nox <- jackknife(x, f.nox)

+ jack.rm <- jackknife(x, f.rm)

+ jack.dis <- jackknife(x, f.dis)

+ jack.pr <- jackknife(x, f.pr)

+ jack.ls <- jackknife(x, f.ls)

+ jack.b0 <- jackknife(x, f.b0)

+

+ mean.b0<-mean(jack.b0$jack.values)

+ mean.nox<-mean(jack.nox$jack.values)

+ mean.rm<-mean(jack.rm$jack.values)

+ mean.dis<-mean(jack.dis$jack.values)

+ mean.pr<-mean(jack.pr$jack.values)

+ mean.ls<-mean(jack.ls$jack.values)

+

+ bias.b0<-jack.b0$jack.bias

+ bias.nox<-jack.nox$jack.bias

+ bias.rm<-jack.rm$jack.bias

+ bias.dis<-jack.dis$jack.bias

+ bias.pr<-jack.pr$jack.bias

+ bias.ls<-jack.ls$jack.bias

+

+ se.b0<-jack.b0$jack.se

+ se.nox<-jack.nox$jack.se

+ se.rm<-jack.rm$jack.se

+ se.dis<-jack.dis$jack.se

+ se.pr<-jack.pr$jack.se

+ se.ls<-jack.ls$jack.se

+

+ results <- rbind( c( mean.b0, mean.nox, mean.rm, mean.dis, mean.pr, mean.ls),

+ c(bias.b0, bias.nox, bias.rm, bias.dis, bias.pr, bias.ls),
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c(se.b0,se.nox,se.rm,se.dis,se.pr,se.ls))

+ colnames(results) <- c("B0","B1","B2","B3","B4","B5")

+ rownames(results) <- c( "Est","bias","se")

+

+ CI.b0 <- c(mean.b0-qt(0.975,505)*se.b0, mean.b0+qt(0.975,505)*se.b0)

+ CI.nox <- c(mean.nox-qt(0.975,505)*se.nox, mean.nox+qt(0.975,505)*se.nox)

+ CI.rm <- c(mean.rm-qt(0.975,505)*se.rm, mean.rm+qt(0.975,505)*se.rm)

+ CI.dis <- c(mean.dis-qt(0.975,505)*se.dis, mean.dis+qt(0.975,505)*se.dis)

+ CI.pr <- c(mean.pr-qt(0.975,505)*se.pr, mean.pr+qt(0.975,505)*se.pr)

+ CI.ls <- c(mean.ls-qt(0.975,505)*se.ls, mean.ls+qt(0.975,505)*se.ls)

+

+ results2 <- cbind(c(CI.b0),c(CI.nox),c(CI.rm),c(CI.dis),c(CI.pr),c(CI.ls))

+ colnames(results2) <- c("B0","B1","B2","B3","B4","B5")

+ rownames(results2) <- c( "Lower","Upper")

+

+ print(results)

+ print(results2)

+ }

>

> myjack.f(data)

B0 B1 B2 B3 B4 B5

Est 37.4985856 -17.996566235 4.1633806 -1.184657498 -1.045771476 -0.581079481

bias -0.3082935 0.002654018 0.0369517 0.002416203 0.001182984 0.002080027

se 6.3548753 3.290271301 0.7500144 0.185504387 0.117677890 0.090862674

B0 B1 B2 B3 B4 B5

Lower 25.01334 -24.46087 2.689848 -1.5491129 -1.2769700 -0.7595949

Upper 49.98384 -11.53226 5.636913 -0.8202021 -0.8145729 -0.4025641

>

> set.seed(7)

> mysample <- sample(data, 25, replace=FALSE)

> myjack.f(mysample)

B0 B1 B2 B3 B4 B5

Est 16.347759 -12.427031 7.2896451 -0.1472991 -1.45996020 -0.52178163

bias -3.509645 3.920147 0.2212455 0.1632556 -0.03441305 -0.01396542

se 22.569114 20.904865 3.4482833 0.9223861 0.76852592 0.26599138

B0 B1 B2 B3 B4 B5

Lower -27.99316 -53.49825 0.5148972 -1.959486 -2.96986204 -1.044367618

Upper 60.68868 28.64418 14.0643929 1.664888 0.04994164 0.000804359
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