
Name: ___________________________________

Computing in Statistics, STAT:5400
Midterm 2, Fall 2015

Submit your answers in the ICON drop box as an .Rnw file and .pdf file produced using
Sweave, with your name as author. If you can’t get your .Rnw file to compile, submit
it anyway and include your R output in a separate text file.

In your document, have a named section for each problem, and, where needed, a num-
bered list of answers to multipart questions. You don’t have to type any other text
except where needed to answer a question.

1 Simulation studies

Given a random sample of n observations y1, y2, . . . , yn, the maximum likelihood esti-
mator of the variance in the population from which the sample was drawn is

m =

∑
(yi − ȳ)2

n

This estimator is known to be biased. The unbiased estimator is

s2 =

∑
(yi − ȳ)2

n− 1

Carry out a simulation study to compare these two estimators with respect to mean
squared error for the case when

the true population distribution is Gamma with shape parameter 8 and rate pa-
rameter 2

the sample size is n = 10

Set your number of replicate datasets large enough that the standard error of your
mean-squared-errors estimates is no larger than 0.04.

> set.seed(9)

> n <- 10

> S <- 1000

> mygammas <- matrix(rgamma(n * S, 8,2), nrow=S)

> ssq <- apply(mygammas,1,var)

> mle <- ((n-1)/n) * ssq

> truevar <- 8 / (2^2)

> ssqse <- (ssq - truevar)^2

1

> stderrssq <- sqrt(var(ssqse) / S)

> mlese <- (mle - truevar)^2

> stderrmle <- sqrt(var(mlese) / S)

> results <- rbind(c(mean(ssqse), mean(mlese)),

+ c(stderrssq, stderrmle))

> rownames(results) <- c("Mean squared Errors","Standard Errors of MSE")

> colnames(results) <- c("s^2", "mle")

> print(results)

s^2 mle

Mean squared Errors 1.15565503 0.98000189

Standard Errors of MSE 0.09549936 0.07047994

Standard errors are too big by a factor of about 2.5, so we need to rerun with at least
2.52 = 6.25 times as many replicate datasets.

> set.seed(9)

> n <- 10

> S <- 6250

> mygammas <- matrix(rgamma(n * S, 8,2), nrow=S)

> ssq <- apply(mygammas,1,var)

> mle <- ((n-1)/n) * ssq

> truevar <- 8 / (2^2)

> ssqse <- (ssq - truevar)^2

> stderrssq <- sqrt(var(ssqse) / S)

> mlese <- (mle - truevar)^2

> stderrmle <- sqrt(var(mlese) / S)

> results <- rbind(c(mean(ssqse), mean(mlese)),

+ c(stderrssq, stderrmle))

> rownames(results) <- c("Mean squared Errors","Standard Errors of MSE")

> colnames(results) <- c("s^2", "mle")

> print(results)

s^2 mle

Mean squared Errors 1.20024452 1.01097732

Standard Errors of MSE 0.03635198 0.02671013

2 Jackknife and Bootstrap

Use your first simulated dataset from the previous problem as your data for this problem.
The statistic of interest is the unbiased estimator of variance (s2 as defined above).

2

1. Use the jackknife to estimate the bias in s2 in your gamma dataset of size 10. You
may either use the jackknife function in the bootstrap package or use other
code to implement the jackknife. Show your R code and its output.

2. Next, use the nonparametric bootstrap for the same purpose. You may either use
the boot function in the boot package or other code to implement the nonpara-
metric bootstrap. Show your R code and its output.

3. It is often said that the jackknife is an approximation to the bootstrap. Comment
briefly on which procedure performs better in this problem.

> library(boot)

> library(bootstrap)

> data <- mygammas[1,]

> jackout <- jackknife(data, var)

> print(jackout)

$jack.se

[1] 1.044081

$jack.bias

[1] 0

$jack.values

[1] 2.305184 2.536698 2.538855 2.504174 2.166944 2.220637 2.515750 2.097822

[9] 2.468824 1.337734

$call

jackknife(x = data, theta = var)

> myvar <- function(x,ind) {var(x[ind])}

> bootout <- boot(data, myvar, R=1999)

> print(bootout)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = data, statistic = myvar, R = 1999)

Bootstrap Statistics :

original bias std. error

t1* 2.269262 -0.2415807 0.8491776

3

>

Since s2 actually is an unbiased estimator, the jackknife is correct to estimate the bias
at 0. In this case, jackknife performs better than bootstrap.

3 Root-finding

Consider the function
f(x) = x4 − 6x3 + 5x2 − x− 1

1. Plot this function on the interval (1,7). Show your R code and the plot.

2. Explain briefly why the bisection algorith could be used to find the root of this
function on the interval (1,7).

f is a continuous function. f(1) is negative and f(7) is positive.

3. Find the root of this function on the interval (1,7) in a two-step process:

(a) First, use the bisection algorithm to find an interval of width not greater
than 0.75 that contains the root.

(b) Then use uniroot or any other optimization function of your choice to find
the root to within ±0.00001.

> f <- function(x) x^4 - 6 * x^3 + 5 * x^2 -x - 1

> print(f(1))

[1] -2

> print(f(7))

[1] 580

> x <- seq(1,7,by=0.1)

> plot(x, f(x), type="l")

> source("bisection.R")

> bisection.out <- bisection(f, 1,7, 0.75, 15)

> newinterval <- c(bisection.out$a, bisection.out$b)

> print(newinterval)

[1] 4.75 5.50

> print(uniroot(f, newinterval, tol=0.00001))

4

$root

[1] 5.058341

$f.root

[1] -0.0001784718

$iter

[1] 5

$init.it

[1] NA

$estim.prec

[1] 5e-06

1 2 3 4 5 6 7

0
10

0
20

0
30

0
40

0
50

0
60

0

x

f(
x)

5

