Name:

1. An economist believes that women are more successful business people than men. He collects to data to assess whether the proportion of women-owned businesses that fail is smaller than the proportion of men-owned businesses that fail. He observes a random sample of 148 small businesses for a three-year period. During that time, 106 of the businesses headed by men and 7 of the 42 businesses headed by women fail. The attached SAS output can be used to answer some of the following questions. In the dataset used in SAS, the codings are:
```
gender: M = men
    F = women
failed: F = failed
    S = succeeded (did not fail)
```

(a) Should the economist carry out a one-sided or two-sided hypothesis test? Briefly state why.
(b) Write the null and alternative hypotheses that the economist wishes to test. Use conventional statistical symbols.
(c) Calculate the expected count for the first cell of the contingency table (layout as in the SAS output). Numeric answer; show your work.
(d) Should the economist reject the null hypothesis? Why or why not?
(e) What does your answer mean in terms of business failures for women versus men?
(f) Why was the Chi-square test appropriate for this problem instead of the twosample t test?
2. You are interested in estimating the proportion of failures in the population of womenowned businesses. You will use the economist's data on women-owned businesses from the previous problem (7 failures in 42 businesses).
(a) Are the rules of thumb met for the use of the large-sample normal approximation? List the rules of thumb and assess each one for these data.
(b) Use the plus-4 method to calculate a 95% confidence interval for the population proportion of failures in women-owned businesses. (Numeric answer; show your work.)
(c) What was the margin of error in your confidence interval? (Numeric answer).
3. This problem is based on data on per capita gross domestic product and life expectancy from the Gap Minder project (gapminder.org). Data from 143 countries in 2007 are used.
(a) I was interested in using per capita gross domestic product (gdpPercap) to predict life expectancyi (lifeExp). Refer to the SAS output to explain why I chose to use the log of per capita gross domestic product (loggdppc) instead of the untransformed version.
(b) I wish to test the null hypothesis that there is no linear relationship between loggdppc and lifeExp in the population of all countries. Write the null and alternative hypotheses using the statistical symbol we used in class.
(c) Cite two different parts of the SAS output to explain why I should or should not reject H_{0} at significance level $\alpha=0.05$.
(d) Country A has .2 log units higher loggdppc than Country B. What is the expected difference between lifeExp in Country A and CountryB? (Numeric answer)
(e) Give a 95% prediction interval for life expectancy in an individual new country with loggdppc equal to 10.45 .
(f) Would the 95% confidence interval for the mean life expectancy in all countries with loggdppc equal to 10.45 be wider or narrower than the 95% prediction interval that you gave above? Briefly justify your answer.

SAS output for problem 1.
The FREQ Procedure
Table of gender by failed
gender failed

Statistics for Table of gender by failed

Statistic	DF	Value	Prob
Chi-Square	1	0.1504	0.6981
Likelihood Ratio Chi-Square	1	0.1476	0.7008
Continuity Adj. Chi-Square	1	0.0173	0.8953
Mantel-Haenszel Chi-Square	1	0.1494	0.6991

SAS output for problem 3.
Plot of lifeExp*gdpPercap. Symbol used is '.'.
lifeExp |
$90+$
$80+$
1
|
|
|
70
I
\| . .
| ..
\|.
1.

60 +. . .
I...
| . .
| ..
|. . .
\|.
50 +. . .
I. .
|. .
I.
|. . .
\|.
$40+$
|
$\begin{array}{cccc}-+------------+------------+---------------+ \\ 0 & 20000 & 40000 & 60000\end{array}$
gdpPercap

The REG Procedure
Model: MODEL1
Dependent Variable: lifeExp

$$
\text { Number of Observations Read } 142
$$

Number of Observations Used 142

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	1	13450	13450	265.15	<. 0001
Error	140	7101.71245	50.72652		
Corrected Total	141	20552			

Root MSE	7.12226	R-Square	0.6544
Dependent Mean	67.00742	Adj R-Sq	0.6520
Coeff Var	10.62905		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr $>\|t\|$
Intercept	1	4.94961	3.85768	1.28	0.2016
loggdppc	1	7.20280	0.44234	16.28	$<.0001$

Parameter Estimates			
Variable	DF	95% Confidence Limits	
Intercept	1	-2.67724	12.57646
loggdppc	1	6.32827	8.07733

The REG Procedure
Model: MODEL1
Dependent Variable: lifeExp

Output Statistics

