STAT:2010/4200

Lab 8.
One-way ANOVA

1 Datasets

We will need the following dataset
autistic.dat
hotdogs.dat

2 Immunology

(example taken from Daniel Biostatistics: A Foundation for Analysis in the Health Sciences

Research by Singh et al. (1999) as reported in the journal Clinical Immunology and Immunopathology is concerned with immune abnormalities in autistic children. As part of their research, they took measurements on the serum concentration of an antigen in three samples of children, autistic children, normal children, and mentallyhandicapped children (non-Down's-syndrome). All children were 10 years old or younger.

This dataset contains two variables:

```
concentration of the antigen (in units per milliliter of serum)
group, coded A for autistic
    N for normal
    M for mentally handicapped
```

1. What population(s) do the researchers wish to study?
2. If the researchers believed that the distributions of serum concentrations of this antigen were normal in each of the populations of interest, what additional assumption would be needed to justify the use of one-way ANOVA to analyze these data?
3. What is the null hypothesis?
4. What is the alternative hypothesis
5. Read the dataset into SAS:
```
data autistic ;
infile 'c:\temp\autistic.dat' ;
input conc group $ ;
run ;
```

6. Use SAS to check the assumptions of one-way ANOVA.
```
proc sort data = autistic ;
by group ;
run ;
proc univariate plot data = autistic ;
var conc ;
by group ;
run ;
proc means data = autistic ;
var conc ;
by group ;
run ;
```

(a) Do the distributions of the sample data appear to be roughly normal?
(b) Is the largest sample standard deviation no more than twice as large as the smallest sample standard deviation?

In summary, it is not safe to use ANOVA to perform a test for H_{0} and H_{a} specified above. We can resort to a nonparametric test instead.

Part of the SAS output:
The UNIVARIATE Procedure
Variable: conc

Schematic Plots

The MEANS Procedure

	Analysis Variable : conc	
N	Mean	Std Dev

3 Food

The "hotdogs" dataset contains data on the sodium and calories contained in each of 54 major hotdog brands. The variables are:

```
type -- Beef, Meat, or Poultry
calories per hotdog
sodium per hotdog
```

There are many other brands of hotdogs on the market besides those included in this dataset. We are interested in determining whether the mean number of calories per hotdog is the same in all of the three types of hotdogs.

1. What population(s) do we researchers wish to study?
2. What is the null hypothesis?
3. What is the alternative hypothesis
4. Read the dataset into SAS:
```
data hotdogs ;
infile 'c:\temp\hotdogs.dat' ;
input type $ calories sodium ;
run ;
```

5. Use SAS to check the assumptions of one-way ANOVA.
```
proc sort data = hotdogs ;
by type ;
run ;
proc univariate plot data = hotdogs ;
var calories ;
by type;
run ;
proc means data = hotdogs ;
var calories ;
by type ;
run ;
```


N	Analysis Variable : calories			
	Mean	Std Dev	Minimum	Maximum
20	156.8500000	22.6420080	111.0000000	190.0000000
	Analysis Variable : calories			
N	Mean	Std Dev	Minimum	Maximum
17	158.7058824	25.2357997	107.0000000	195.0000000
Analysis Variable : calories				
N	Mean	Std Dev	Minimum	Maximum
17	118.7647059	22.5514119	86.0000000	152.0000000

(a) Do the distributions of the sample data appear to be roughly normal?
(b) Is the largest sample standard deviation no more than twice as large as the smallest sample standard deviation?
6. Use SAS to test your hypotheses at the $\alpha=.05$

```
proc anova data = hotdogs ;
class type ;
model calories = type ;
run ;
```

The SAS output is as follows:

	The ANOVA Procedure		
Class Level Information			

Dependent Variable: calories

7. Can we reject the overall hypothesis of equality of means?
8. Are we justified in carrying out pairwise t-tests to look for significant differences between individual pairs of means?
9. Add a "means" statement to carry out the pairwise t-tests with Bonferroni correction.

```
proc anova data = hotdogs ;
class type ;
model calories = type ;
means type / bon alpha = . 05 ;
run ;
```

The new part of the output is:
The ANOVA Procedure
Bonferroni (Dunn) t Tests for calories
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than Tukey's for all pairwise comparisons.

Alpha			0.05		
Error Degrees of Freedom					
Error Mean Square 550.336					
Critical Value of t 2.47551					
Comparisons significant at the 0.05 level are indicated by $* * *$.					
Difference					
type Comparison		Between	Simultaneous 95\%		
		Means	Confidence Limits		
Meat	- Beef	1.856	-17.302	21.013	
Meat	- Poultry	39.941	20.022	59.860	***
Beef	- Meat	-1.856	-21.013	17.302	
Beef	- Poultry	38.085	18.928	57.243	***
Poult	- Meat	-39.941	-59.860	-20.022	***
Poult	- Beef	-38.085	-57.243	-18.928	***

10. Which population means are significantly different at the .05 level?

Remark: The above SAS output looks a bit different from what we see in chap25 notes p. 20 (where A, B, C ... are used to indicate which pairs are not significantly different). Actually, for this follow-up test of ANOVA, SAS might produce either one of the two types of output, and you need to know how to read either one (explained in more details in class.) For the one above: we are doing three pairs of comparisons (SAS listed six, but three of them are redundant because, say, they looked at the difference between meat-beef and then that of beef-meat).

