22S:30 and 22S:105
 Statistical Methods and Computing
 Graphical Depiction of Qualitative and Quantitative Data and
 Measures of Central Tendency

Bar charts for nominal and ordinal data

- present a frequency distribution in visual form
- categories that are possible values of the variable are listed on horizontal axis
- bar heights represent either frequency or relative frequency of observations in that class

Lecture 2
January 20, 2017

Kate Cowles
374 SH, 335-0727
kate-cowles@uiowa.edu

4
Pie charts

- a "slice" for each possible value of the variable
- area of slice represents the proportion of the whole that the category makes up
- all categories must be included

Histograms for quantitative data

Cereal Products by Manufacturer
 frequency of mfr

- presents a frequency distribution of discrete or continuous data in visual form
- range of possible values must be divided into intervals
- easiest to work with if intervals are of equal width
- limits of intervals are shown on horizontal axis
- vertical bar centered at midpoint of each interval
- area of each bar represents frequency associated with corresponding interval

Example 2: Wealth in billions of dollars of the 209 billionaires in the world in 1992

Symmetric and skewed distributions

- symmetric - right and left sides of histogram are roughly mirror images
- skewed to the right - long "tail" on right side; some extremely large values
- skewed to the left - some extremely small values

Outliers

- individual values that deviate from the general pattern of the data

Stemplots for quantitative variables

- show overall shape of distribtution
- give more detailed information than histograms
- feasible only for fairly small datasets

Example

- Investigators suspected that Benzo(a)pyrene, or BaP, from a pipe foundry in Phillipsburg, NJ, might be contaminating household air.
- This dataset presents data from 14 different days on samples of indoor air from a house near the foundry and samples of outdoor air collected at the same times.
- The measures are concentrations of BaP-containing particles no larger than 10 micrograms.
- The two variables are:
- indoor air BaP
- outdoor air BaP

Reference: Lioy, PL, Walman, JM, Greenberg, A, Harkov, R and Pietarninen, C (1988). The total human environmental exposure study (THEES) to Benzo(a)pyrene: Comparison of the inhalation and food pathways. Archives of Environmental Health, 43: 304-312.

Line plots or time plots

- Usually time is plotted on the x -axis.
- Some other variable that changes over time is plotted on y-axis. Points are connected by lines.

Example: High-water mark for Amazon River at Isquitos, Peru, for years 1962-1978

Variable=OUTDOOR

Stem Leaf	\#
7	8
6	57
5	06
401	1
3	58
2	04557
	----+----+---+----+
Multiply Stem.Leaf by $10 * *+1$	

Measures of central tendency for quantitative data

- Before we can use data to draw conclusions, we must summarize the data to get the "overall picture"
- Number of values may be so large that looking at them all at once loses meaning
- We may be interested in too many different variables to graph each one.
- Note: We often refer to the data we have collected as a "sample" because it probably does not include all the possible subjects of the type in which we are interested
- One useful measure is to define the center or middle of the data
- Several different measures of central tendency are useful in different situations

The mean

- The arithmetic mean or average of a set of values is calculated by adding up all the values and dividing by the number of values.

If we add up all the birthweights and divide by 20 , we find that the mean is 3166.9 g .

18
Example: a sample of birthweights of live-born infants born at a private hospital in San Diego during a 1-week period (in grams)

3265
3260
3245
3484
4146
3323
3649
3200
3031
2069
2581
2841
3609
2838
3541
2759
3248
3314
3101
2834
${ }^{20}$

Notation

- Generically, we may refer to each value of a particular numeric variable in a dataset as x_{i}, where i indexes observations.
In the birthweights data,

$$
\begin{aligned}
& x_{1}=3265 \\
& x_{15}=3541
\end{aligned}
$$

- So all the values for this variable may be referred to as x_{1}, \ldots, x_{n}, where n is the total number of observations in the dataset
- We can use the summation sign Σ to indicate a sum. The following notation

$$
\sum_{i=1}^{n} x_{i}
$$

is a short way of writing

$$
x_{1}+x_{2}+\ldots+x_{n}
$$

- We can write the computation of the mean as

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- \bar{x} is the standard notation for the mean, if we are referring to the individual data values as $x_{i} \mathrm{~S}$

The mean is very sensitive to extreme values in the sample.

Example: the mean of the following numbers is 84 .

$$
\begin{array}{lllll}
75 & 82 & 95 & 80 & 88
\end{array}
$$

But the mean of the following numbers is 74 .

