22S:105 Statistical Methods and Computing

1

3

Introduction

Lecture 1 January 18, 2017

Kate Cowles 374 SH, 335-0727 kate-cowles@uiowa.edu What is statistics?

2

- Statistics is the science of using data to make decisions and answer questions.
- \bullet Statistics involves
 - designing studies
 - collecting data
 - organizing and analyzing data
 - interpreting and reporting results

The Challenger: How understanding of statistical methods might have prevented a tragedy

References:

Dalal, SR, Fowlkes, EB, Hoadley, B. (1989) "Risk Analysis of the Space Shuttle: Pre-Challenger Prediction of Failure." *Journal of the American Statistical Association*, **84**, 945-957.

Tufte, Edward R. (1997) "The Decision to Launch the Space Shuttle Challenger," in *Visual and Statistical Thinking: Displays of Evidence for Making Decisions*, Graphics Press

On 1/28/86 space shuttle Challenger exploded during launch

 \bullet 7 astronauts killed

4

- reason: gas leak through a joint that should have been sealed by two rubber O-rings
 - O-rings had lost resiliency due to cold temperature

On the previous day, extensive discussions of whether or not it would be safe to launch

- predicted temperature for launch time: $26-29^{\circ}$
- \bullet no shuttle had ever been launched at temperature lower than 53^o
- engineers who designed rocket faxed to NASA a recommendation not to launch due to risk of O-ring failure at low temperatures
- NASA officials pointed out weaknesses of engineers' evidence
- after lengthy discussion, managers of rocket- making company changed their minds and recommended launch

The engineers' evidence

• history of serious but non-catastrophic O-ring damage during previous cool-weather launches

 $\overline{7}$

8

- physics of resiliency of rubber
- experimental data

The engineers' plot of data from previous shuttle launches: joint temperature vs. number of O-rings having some temperature-related problems

9

What was missing from the engineers' argument?

- quantification of the relationship between joint temperature and O-ring failure
- prediction of the probability of O-ring failure at 29°, with assessment of degree of uncertainty

an appropriate statistical method: logistic regression

- Dalal et al. carried out such an analysis (after the fact) using data from the 23 shuttle launches prior to the Challenger
- found strong statistical evidence of a temperature effect on O-rings
- we will analyze these data later in the semester

A plot showing data from all 23 previous launches, including those in which no O-rings were damaged

Figure 1. Joint Temperature Versus Number of O-Rings Having Some Thermal Distress Identified by Flight Number. Panel b includes flights with no incidents.

11

Subjects, observations, and variables

In statistical studies, we generally choose a set of **indi**viduals or **subjects** on whom data is collected.

We usually are interested in collecting a number of different kinds of information to describe each subject.

A **variable** is a particular characteristic that may take on different values for different subjects. For example,

- age
- gender
- diagnosis

are three variables that might be included in a study of length of hospital stays of hospital patients. $1\,2$

For analysis by a computer, a set of data collected for a study is often organized as a table with a row for each subject and a column for each variable.

Pat id age sex diagnosis 101 25 F hepatitis A 102 38 F cirrhosis 103 76 M hepatitis C

Each row in such a table, corresponding to the data for a single subject, is called an **observation**.

Í

Types of variables

• Qualitative (textbook calls this "categorical")

– Nominal

- * values fall into *unordered* categories
- * numbers may be used to represent categories, but they are just labels
- \ast example: variable called "occupational area" coded as
 - $\cdot 1 = education$
 - $\cdot 2 = business$
 - $\cdot 3 =$ service
 - $\cdot 4 = \text{industry}$
 - \cdot etc., etc.
- * special case: **binary** data, which can take on only 2 possible values

– Ordinal

- * data representing *ordered* categories
- * example: variable called "prognosis" taking on possible values "poor," "fair," "good"

15

What data type is each of the following?

- a variable defined for each pre-Challenger shuttle launch as the answer to the question "Were any primary Orings damaged during launch (yes/no)?"
- a variable defined for each pre-Challenger shuttle launch as the total number of primary O-rings that were damaged (out of the 6 primary O-rings in a shuttle)
- a variable defined as outdoor temperature in degrees F at launch time of each shuttle

The **distribution** of a variables tells what values it takes and how frequently it takes them.

- 14
 - \bullet Quantitative

– Discrete

- * both *order* and *magnitude* are important
- * numbers represent measurable quantities
- * possible values are restricted, often to be integers
- \ast example: count of number of homicides in Johnson County in 1998

– Continuous

- * numbers represent measurable quantities and are *not* restricted to a set of specified values
- * examples: temperature, blood pressure, annual profit
- \ast Special case: ${\bf censored}$ data
 - \cdot continuous data in which values for some subjects are not observable
 - \cdot some values are known only to be larger (or smaller) than some observed value
 - \cdot example: time-to-failure data

16

Exploratory data analysis

- \bullet initial examination to discover main features of data
- should begin with examining each variable one at a time
- may proceed to examining relationships between variables
- \bullet should begin with graphs
- may continue with numerical summaries

Describing binary, nominal, and ordinal data

- tables of frequencies and percents
- bar charts (also called bar graphs)
- \bullet pie charts

frequency distribution for nominal or ordinal data

• a set of classes or categories along with numerical counts of the number of members of each class

18

Example: Study of nutrition in breakfast cereals

Abstract:

This datafile contains nutritional information and grocery shelf location for 77 breakfast cereals. Data was obtained from the Data and Story Library http://lib.stat.cmu.edu/DAS

Variable Names

- 1. Name: Name of cereal
- 2. mfr: Manufacturer of cereal where A = American Home Food Products; G = General Mills; K = Kelloggs; N = Nabisco; P = Post; Q = Quaker Oats; R = Ralston Purina
- 3. type: cold or hot
- 4. calories: calories per serving
- 5. protein: grams of protein

	19	20					
6. fat: grams of fat				The FR	EQ Procedu	ure	
7. sodium: milligrams of sodium		type	Frequency	Perc	Cur ent Fi	nulative requency	Cumulative Percent
8. fiber: grams of dietary fiber		 Cold Hot	74	96.	10	74 77	96.10
9. carbo: grams of complex carbohydrates		not	5	0.1	50		100.00
10. sugars: grams of sugars		mfr	Frequ	ency	Percent	Cumulati Frequen	ve Cumulative cy Percent
11. potass: milligrams of potassium		American H General Mi	 ome 11s	1 22	1.30 28.57	2	1 1.30 3 29.87
12 vitamins: vitamins and minerals - 0 25	or 100-indi-	Kelloggs		23	29.87	4	6 59.74
enting the typical percentage of FDA reg	ammondod	Nabisco Post		6 9	7.79 11.69	5	2 67.53 1 79.22
cating the typical percentage of PDA reco	Jumended	Quaker Oat	s	8	10.39	6	9 89.61
13. shelf: display shelf $(1, 2, \text{ or } 3, \text{ counting from } 1)$	m the floor)	Ralston Pu	rina	8	10.39	7	7 100.00
14. weight: weight in ounces of one serving					Cı	umulative	Cumulative

15.	cups:	number	of	cups in	one	serving	

16. rating: a rating of the cereals

Cumulative Cumulative Percent shelf Frequency Percent Frequency Bottom 25.97 20 25.97 20 41 77 Middle 21 27.27 53.25 Top 36 46.75 100.00

A frequency distribution may be tabulated for a *quantitative variable* if the range of possible values for the variable is first divided into non-overlapping intervals.

sodium	Frequency	Percent	Cumulative Frequency	Cumulative Percent
 0-<80	14	18.18	14	18.18
80-<160	18	23.38	32	41.56
160-<240	33	42.86	65	84.42
240-320	12	15.58	77	100.00

22

Relative frequency

- The **relative frequency** for a class is the *percentage* of the total number of observations that are in that class.
- It is computed as

	number	in	class	\sim	100
total	number	of	observations	^	100

- Relative frequencies are particularly useful for comparing sets of data with different total numbers of observations
- SAS just calls this "Percent"

23

24

Cumulative relative frequency

- Cumulative relative frequency for a category of an ordinal variable is the percentage of the total number of observations that have a value less than or equal to the category value.
- Cumulative relative frequency for an interval of a continuous variable is the percentage of the total number of observations that have a value less than or equal to the upper limit of the interval.
- SAS calls this "cumulative percent."

Example

		- mfr=Kellog	gs	
sodium	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0-<80	3	13.04	3	13.04
80-<160	6	26.09	9	39.13
160-<240	9	39.13	18	78.26
240-320	5	21.74	23	100.00
	:	mfr=Quaker C	lats	
			Cumulative	Cumulative
sodium	Frequency	Percent	Frequency	Percent
0-<80	4	50.00	4	50.00
80-<160	2	25.00	6	75.00
160-<240	2	25.00	8	100.00
	m	fr=Ralston P	urina	
			Cumulative	Cumulative
sodium	Frequency	Percent	Frequency	Percent
80-<160	2	25.00	2	25.00
160-<240	4	50.00	6	75.00
240-320	2	25 00	8	100 00

----- mfr=General Mills -----The FREQ Procedure

sodium	Frequency	Percent	Cumulative Frequency	Cumulative Percent
80-<160	4	18.18	4	18.18
160-<240	13	59.09	17	77.27
240-320	5	22.73	22	100.00

----- mfr=Kelloggs -----

The FREQ Procedure

sodium	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0-<80	3	13.04	3	13.04
80-<160	6	26.09	9	39.13
160-<240	9	39.13	18	78.26
240-320	5	21.74	23	100.00