Fanzhong Cao, Yaning Ling, Han Shi STAT:2010:0AAA Spr17 4/29/2017

What affects our grades in high school?

In our project, we analyzed a dataset containing information about 395 high school aged students. The data were obtained in a survey of students in math classes, and it contains information about their study habits, alcohol consumption, and attendance consistency. We found the dataset on kaggle.com and we modified it to fit our study. Our research question is: "How do study time, alcohol consumption and absences affect academic performance in high school?".

* Grades and study time

SAS Code: data study; input grade studytime absence au; datalines : *datalines here ; run ; proc sort data = study ; by studytime ; run ; proc univariate plot data = study; var grade; by studytime ; run ; proc means data = study ; var grade : by studytime ; run; proc anova data = study; class studytime ; model grade = studytime ; run ;

studytime=1

Analysis Variable : grade				
N	Mean	Std Dev	Minimum	Maximum
105	30.7619048	12.4077549	4.0000000	56.0000000

studytime=2

Analysis Variable : grade				
Ν	Mean	Std Dev	Minimum	Maximum
198	31.3282828	10.1400502	6.000000	55.0000000

studytime=3

Analysis Variable : grade				
Ν	Mean	Std Dev	Minimum	Maximum
65	34.9538462	10.9664699	7.0000000	56.0000000

studytime=4

Analysis Variable : grade					
Ν	Mean	Std Dev	Minimum	Maximum	
27	35.1851852	11.4456476	16.0000000	58.000000	

The ANO	VA Proc	edure	
Class Lev	/el Inforr	nation	1
Class	Class Levels Values		
studytime	4	1234	
Number of Observations Read			395
Number of Obs	ervation	s Used	395

The ANOVA Procedure

Dependent Variable: grade

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	1090.78553	363.59518	3.00	0.0305
Error	391	47369.64485	121.14999		
Corrected Total	394	48460.43038			

R-Square	Coeff Var	Root MSE	grade Mean
0.022509	34.35553	11.00682	32.03797

Source	DF	Anova SS	Mean Square	F Value	Pr > F
studytime	3	1090.785532	363.595177	3.00	0.0305

Bonferroni (Dunn) t Tests for grade

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than Tukey's for all pairwise comparisons.

Alpha	0.05
Error Degrees of Freedom	391
Error Mean Square	121.15
Critical Value of t	2.65175

Comparisons significant at the 0.05 level are indicated by ***.				
studytime Comparison	Difference Between Means	Simultaneous 9 Lim	5% Confidence its	
4 - 3	0.231	-6.451	6.914	
4 - 2	3.857	-2.131	9.845	
4 - 1	4.423	-1.875	10.721	
3 - 4	-0.231	-6.914	6.451	
3 - 2	3.626	-0.547	7.798	
3 - 1	4.192	-0.415	8.798	
2 - 4	-3.857	-9.845	2.131	
2 - 3	-3.626	-7.798	0.547	
2 - 1	0.566	-2.957	4.090	
1 - 4	-4.423	-10.721	1.875	
1 - 3	-4.192	-8.798	0.415	
1 - 2	-0.566	-4.090	2.957	

Interpretation: The numbers 1 to 4 represent different levels of study time: 1-<2 hours, 2-2 to 5 hours, 3-5 to 10 hours, and 4->10 hours. From the side-by-side boxplots of grade by study time, we can observe that the median grades increase with more study time. The minimum grade of each study time level increases with study time, and maximum grade of the fourth level of study time is the highest of the whole dataset. There is some evidence suggesting that students who study for more hours tend to get higher grades.

We did the ANOVA test in SAS, and the P-value is 0.03. Therefore, we can conclude that the mean grades of each study time level differs at a 0.05 significance level. By observing the difference between mean grades for each level of study time, we conclude that on average, students' grades increase as study time increases.

Grades and alcohol consumption

SAS Code: proc sort data = study ; by au ; run ; proc univariate plot data = study ; var grade ; by au ; run ; proc means data = study ; var grade ; by au ; run ; proc anova data = study ; class au ; model grade = au ;

run ;

SAS Results:

The MEANS Procedure

alcohol=2

Analysis Variable : grade					
N	Mean	Std Dev Minimum		Maximum	
150	33.1000000	12.1460630	4.0000000	58.0000000	

alcohol=3

Analysis Variable : grade					
N	Mean	Std Dev	Minimum	Maximum	
66	32.1515152	11.9463447	5.0000000	55.0000000	

alcohol=4

	Analysis Variable : grade					
N	Mean	Std Dev	Minimum	Maximum		
60	32.2666667	10.3102165	11.0000000	53.0000000		

alcohol=5

	Analysis Variable : grade					
N	Mean	Std Dev	Minimum	Maximum		
45	32.2000000	8.7791074	15.0000000	54.0000000		

Analysis Variable : grade					
Ν	Mean	Std Dev	Minimum	Maximum	

35 27.9142857 10.1209492 7.0000000 48.0000000 alcohol=7

Mean Std Dev Minimum Maximum 17 30.8235294 10.9899687 11.0000000 54.0000000

alcohol=8

	Analysis Variable : grade					
Ν	Mean	Mean Std Dev Minimum		Maximum		
9	31.2222222	9.5233631	14.0000000	45.0000000		

alcohol=9

	Analysis Variable : grade					
N	Mean	Mean Std Dev Minimum		Maximum		
4	28.5000000	5.9721576	23.0000000	37.0000000		

alcohol=10

	Analysis Variable : grade					
Ν	Mean	Std Dev	Minimum	Maximum		
9	31.8888889	7.4236858	19.0000000	40.0000000		

Т	he SAS	S System	
The	e ANOVA	A Procedure	
Cla	ss Level	Information	
Class	Levels	Values	
alcohol	9	2345678	9 10
N	- (O)		205
Number of Observations Read			395
Number of Observations Used			395

The SAS System

The ANOVA Procedure

Dependent Variable: grade

Sourc	e		D	F	Sum of Sq	uares	Mean	S	quare	F١	/alue	Pr >	• F
Mode	I .			8	850.8543		1	106.35679			0.86	0.54	85
Error		38	6	47609.5760		123.34087							
Corre	cted T	otal	39	4	48460.43038								
		R-9	Squa	are	Coeff Va	Root	t MSE	g	rade M	ear	n		
0.0		017	558	34.66478	8 11.	10589		32.03	3797	7			
	Sourc	e	DF		Anova SS	Mean	Squar	re	F Val	ue	Pr > F	:	
	alcoh	ol	8	85	0.8543081	106.	356788	85	0.	86	0.5485		

Interpretation: The numbers 2 to 10 represent different levels of alcohol consumption: 2-very low to 10-very high. From the side-by-side boxplots of grade by alcohol consumption, there are outliers of the seventh level of alcohol use. If we ignore the seventh level, we can see the maximum grade of each box is roughly decreasing as alcohol consumption increases. The 75% quartile of boxes with higher alcohol consumption tend to have lower grades. Therefore, we can say that there is some evidence suggesting that students with less alcohol consumption are more likely to achieve better grades.

We also did the ANOVA test in SAS, and the P-value is 0.54. Therefore, there is not enough evidence to state that the mean grades of each alcohol consumption level differ significantly.

Grades and absences

<u>SAS Code:</u> proc corr data = study ; var absence grade ; run ;

proc reg data = study ; model grade = absence ; run ;

proc means data = study ; var grade ; by absence ; run ;

proc anova data = study ; class absence ; model grade = absence ; run ;

SAS Results:

The SAS System

The CORR Procedure

2 Variables: absence grade

Simple Statistics								
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum		
absence	395	5.70886	8.00310	2255	0	75.00000		
grade	395	32.03797	11.09036	12655	4.00000	58.00000		

Pearson Correlation Coefficients, N = 395 Prob > r under H0: Rho=0				
	absence	grade		
absence	1.00000	-0.00591 0.9068		
grade	-0.00591 0.9068	1.00000		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	1	32.08472	0.68659	46.73	<.0001		
absence	1	-0.00819	0.06990	-0.12	0.9068		

Quantiles (Definition 5)				
Level	Quantile			
100% Max	75			
99%	40			
95%	19			
90%	14			
75% Q3	8			
50% Median	4			
25% Q1	0			
10%	0			
5%	0			
1%	0			
0% Min	0			

The MEANS Procedure

absence=1

	Analysis Variable : grade									
Ν	Mean	Mean Std Dev Minimum								
244	31.8401639	11.8704888	4.0000000	58.0000000						

absence=2

		Analysis Variable : grade								
	N	Mean	Std Dev	Minimum	Maximum					
ľ	<mark>6</mark> 5	33.3538462	10.1971668	13.0000000	56.0000000					

absence=3

	Analysis Variable : grade									
N	Mean	Std Dev	Minimum	Maximum						
86	31.6046512	9.3472601	15.0000000	56.0000000						

	The ANOVA Procedure				
	Class Le	vel Infor	mation		
	Class	Levels	Values		
	absence	3	123		
Nun	ber of Ob	servatio	ns Read	395	
Nun	nber of Ob	servatio	ns Used	395	
	The ANO	VA Proce	dure		
I	Dependent	Variable:	grade		

Source		DF	1	Sum of Squ	lares	Mean	S	quare	FΝ	alue	Pr > F	
Model			2		138.2443		69.12215			0.56	0.5712	
Error		392	48322.18607		123.27088							
Corre	Corrected Total		394		48460.4	13038						
	R-S		quar	е	Coeff Var	Roo	t MSE	gr	ade M	ean		
			0285	3	34.65494	11.10274		32.03797				
									_			
	Source		DF		Anova SS	Mear	Squa	re	F Val	ue	Pr > 1	F

2 138.2443083

absence

Interpretation: After doing the correlation in SAS, we find that there is a weak negative relationship between absences and grades, so we divided the number of absences into three levels(1- 0 to 4 days, 2- 5 to 8 days, 3- more than 8 days) according to the quantiles of absence data. From the side-by-side boxplots of grade by absence, the maximum grade of each box decreases with the increase of absences. Also, the 75% quartile of higher level of absences decreases. It seems that students with fewer absence days are more likely to get good grades. However, after doing the ANOVA test in SAS, we find that the P-value is 0.57. Moreover, we observe that the mean grade for absence=1, the mean grade for absence=2, and the mean grade for absence=3 are respectively 31.84, 33.35, and 31.60: they do not differ significantly. Therefore, we can conclude that there is not enough evidence to state that the amount of absences affect the grades received by the students.

69.1221542

0.56 0.5712

Link to the original dataset: https://www.kaggle.com/uciml/student-alcohol-consumption