# chap8.R # Exhibit 8.1 win.graph(width=4.875, height=3,pointsize=8) data(color) m1.color=arima(color,order=c(1,0,0)) m1.color plot(rstandard(m1.color),ylab='Standardized residuals',type='b') abline(h=0) # Exhibit 8.2 data(hare) m1.hare=arima(sqrt(hare),order=c(3,0,0)) m1.hare # the AR(2) coefficient is not significant; it is second in the # list of coefficients. m2.hare=arima(sqrt(hare),order=c(3,0,0),fixed=c(NA,0,NA,NA)) # fixed the AR(2) # coefficient to be 0 via the fixed argument. m2.hare # Note that the intercept term is actually the mean in the centered form # of the ARMA model, i.e. if y(t)=sqrt(hare)-intercept, then the model is # y(t)=0.919*y(t-1)-0.5313*y(t-3)+e(t) # So the "ture" intercept equals 5.6889*(1-0.919+0.5313)=3.483, as stated in # the book! plot(rstandard(m2.hare),ylab='Standardized residuals',type='b') abline(h=0) # Exhibit 8.3 data(oil.price) m1.oil=arima(log(oil.price),order=c(0,1,1)) plot(rstandard(m1.oil),ylab='Standardized residuals',type='l') abline(h=0) # Exhibit 8.4 win.graph(width=3, height=3,pointsize=8) qqnorm(residuals(m1.color)) qqline(residuals(m1.color)) # Exhibit 8.5 qqnorm(residuals(m1.hare)) qqline(residuals(m1.hare)) # Exhibit 8.6 qqnorm(residuals(m1.oil)) qqline(residuals(m1.oil)) # Exhibit 8.9 win.graph(width=4.875, height=3,pointsize=8) acf(residuals(m1.color),main='Sample ACF of Residuals from AR(1) Model for Color') # Exhibit 8.10 acf(residuals(arima(sqrt(hare),order=c(2,0,0))),main='Sample ACF of Residuals from AR(2) Model for Hare ') # Exhibit 8.11 acf(residuals(m1.color),plot=F)$acf signif(acf(residuals(m1.color),plot=F)$acf[1:6],2)# to display the first 6 acf # to 2 significant digits. # Exhibit 8.12 win.graph(width=4.875, height=4.5) tsdiag(m1.color,gof=15,omit.initial=F) # the tsdiag function is modified from that in the # stats package of R. # Exhibit 8.13 m1.color # Exhibit 8.14 m2.color=arima(color,order=c(2,0,0)) m2.color # Exhibit 8.15 m3.color=arima(color,order=c(1,0,1)) m3.color # Exhibit 8.16 m4.color=arima(color,order=c(2,0,1)) m4.color