Homology of a Cell Complex

A finite cell complex X is constructed one cell at a time, working up in dimension. Each time a cell is added, we can analyze the effect on homology and, by this inductive process, calculate the homology groups of X.

In these notes, we will develop some of the main properties of homology of finite cell complexes by using this inductive approach.

Recall that each finitely generated abelian group G can be expressed as the direct product $F \times T$, where F is a free abelian group $\mathbb{Z} \times \mathbb{Z} \times \ldots \times \mathbb{Z}$ and T is finite. The number of \mathbb{Z} factors is called the rank of G. The rank of G is well-defined; that is, given any two decompositions of G as $F_1 \times T_1$ or $F_2 \times T_2$, the ranks of the free abelian parts must be the same. (However, there are different ways to express the torsion parts; for example, $\mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_6$.)

Theorem 1. Suppose X is a finite CW-complex of $[maximum]$ dimension n. For each $k \geq 0$, let c_k denote the number of cells of X of dimension k, and let β_k denote the rank of $H_k(X)$. Then:

1. For each $k \geq n + 1$, $H_k(X) = \{0\}$.
2. $H_n(X)$ is a free abelian group of rank $\leq c_n$.
3. For each k, $H_k(X)$ is generated by some set of c_k [or fewer] elements. In other words, $H_k(X)$ is a quotient group of the free abelian group \mathbb{Z}^{c_k}.
4. $\sum_{k=0}^{n} (-1)^k c_k = \sum_{k=0}^{n} (-1)^k \beta_k$.

Note that part (4) says the Euler characteristic of X is a topological invariant [in fact, a homotopy-type invariant]. The alternating sum of the numbers of cells in each dimension is the same, regardless of how we triangulate X or otherwise express X as a CW-complex.

Part (3) does not say that $\beta_k = c_k$; typically, $\beta_k < c_k$. But it does imply that each β_k is finite. This is why the sum of Betti numbers in part (4) makes sense.
Theorem 1 is a corollary of the following.

Theorem 2. Suppose a space X is obtained [as a quotient space] by attaching a cell B^n to a space Y via a map $f : S^{n-1} \to Y$. (S^{n-1} is the boundary sphere of B^n.) Then the homology groups of X and Y are related as follows:

- For all $k \neq n, n-1$, $H_k(X) \cong H_k(Y)$.
- Exactly one of the following must happen:
 \[\beta_{n-1}(X) = \beta_{n-1}(Y) - 1 \quad \text{and} \quad H_n(X) \cong H_n(Y) \]
 or else
 \[\beta_{n-1}(X) = \beta_{n-1}(Y) \quad \text{and} \quad H_n(X) \cong H_n(Y) \times \mathbb{Z} \]

Remark. Theorem 2 says exactly what $H_n(X)$ must be in the two cases; but it does not say exactly what $H_{n-1}(X)$ must be: it just specifies the rank β_{n-1}. For example, if Y is a Möbius band, and we attach a 2-cell B^2 to Y via a homeomorphism f of their boundaries (so X is $\mathbb{R}P^2$) then

\[
H_1(X) \cong \mathbb{Z}_2 \quad \beta_1(X) = 0 = \beta_1(Y) - 1 \quad H_2(X) = \{0\}.
\]

If, instead, the attaching map f identifies the boundary of B^2 with the center-line of Y, then we have

\[
H_1(X) \cong \{0\} \quad \beta_1(X) = 0 = \beta_1(Y) - 1 \quad H_2(X) = \{0\}.
\]

The basic idea of Theorem 2 is that when we add a new n-cell to Y, we either increase the rank of H_n or else decrease the rank of H_{n-1}. More precisely, adding an n-cell to Y “kills” an element of $H_{n-1}(Y)$; if that element has infinite order in $H_{n-1}(Y)$, then we change the rank of $H_{n-1}(Y)$; if that element is zero, or has finite order, in $H_{n-1}(Y)$, then we don’t change the rank of $H_{n-1}(Y)$, but we do create a new free generator for H_n.

Exam sample: Prove Thm 2 for a specific n, e.g $n=3$. Invoke lemmas as needed w/o pf.

Exam sample: Outline proof of Theorem 1.

Prove Thereom 1 (assuming Theorem 2).

Hint: First prove the theorem in the case $n = 0$ (and $c_n =$ all values). Let (c_0, c_1, \ldots, c_n) be the list of numbers of cells of X. Do the proof by induction on this n-tuple. For the inductive step, Let Y be all of X except for the final n-cell. Then, by inductive assumption, Y satisfies the theorem. Now apply Theorem 2 and work out the bookkeeping.
Proof of Theorem 2

Lemmas for Theorem 2. We need a topology lemma and an additional small algebra lemma.

Lemma 2.1. Suppose a space X is obtained [as a quotient space] by attaching a cell B^n to a space Y via a map $f : S^{n-1} \to Y$. Then for each k,
\[H_k(X, Y) \cong H_k(B^n, S^{n-1}) . \]

Proof. View B^n as the unit ball in \mathbb{R}^n. Let $S_1 = \text{boundary} (B^n)$ and let $S_{1/2}$ be the sphere of radius $\frac{1}{2}$ centered at the origin. Let U be the closed spherical shell bounded by $S_{1/2}$ and S_1. Let $B_{1/2}$ denote the closed ball bounded by $S_{1/2}$. Note that S_1 is a strong deformation retract of U.

When we attach the ball B^n to Y via map $f : S_1 \to Y$, the set $U \cup Y$ becomes the mapping cylinder of f. Let $Y_{1/2}$ denote this set, $U \cup f Y$. We claim that the pair $(X, Y_{1/2})$ is homotopy equivalent to the pair (X, Y).

The pair of line segments $([0, 1], [\frac{1}{2}, 1])$ is homotopy equivalent to the pair $([0, 1], \{1\})$: just gradually shrink $[\frac{1}{2}, 1]$ to its right endpoint, while gradually expanding $[0, 1]$ to fill $[0, 1]$. Apply this radially to B^n to get a homotopy equivalence $(B^n, U) \simeq (B^n, S_1)$. Do the same deformations, but now with the identifications made on S_1 via f, to see how to deformation retract $Y_{1/2}$ to Y while expanding $B^n - \text{int}U$ to fill B^n. (This is just a slight modification of the proof that a mapping cylinder deforms to its target end – see Hatcher’s discussion of mapping cylinders – the target end is the easy end.) Thus we have a homotopy equivalence
\[(Y \cup f B^n, Y \cup f U) \simeq (Y \cup f B^n, Y) , \]
i.e. $(X, Y_{1/2}) \simeq (X, Y)$.

The next step is to excise Y from $(X, Y_{1/2})$. We introduced the neighborhood U in order to ensure that Y is contained in the interior of $Y_{1/2}$. By the Excision Theorem, for each k,
\[H_k(X, Y_{1/2}) \cong H_k(X - Y, Y_{1/2} - Y) . \]

But $X - Y$ is just the open ball $B^n - S_1$, and $Y_{1/2} - Y$ is the half-open shell $U - S_1$, so $(X - Y, Y_{1/2} - Y) \simeq (B_{1/2}, S_{1/2}) \cong (B^n, S^{n-1})$.

\[\square \]
Lemma 2.2. Suppose $\phi : A \to B$ is a group homomorphis. Then ϕ defines an injection $\hat{\phi} : G / \ker \phi \to H$.

Proof. Easy unassigned exercise.

We can use Lemma 2.2 to break a long exact sequence into a collection of short exact sequences. Suppose we have groups and homomorphisms

$$A \xrightarrow{f} B \xrightarrow{g} C$$

where $\text{im}(f) = \ker(g)$. Then

$$A \xrightarrow{f} \text{im}(f) \to \{0\}$$

and

$$\{0\} \to B / \text{im}(f) \xrightarrow{\delta} C$$

are exact.

Proof of Theorem 2. Consider the long exact sequence for the pair (X, Y).

$$\cdots \to H_{k+1}(X, Y) \to H_k(Y) \to H_k(X) \to H_k(X, Y) \to \cdots .$$

By Lemma 2.1, for each k, $H_k(X, Y) \cong H_k(B^n, S^{n-1})$, which we know from earlier work (recall how we calculated homology groups of spheres) is isomorphic to $\tilde{H}_k(S^n)$. So in the long exact sequence, we can replace each $H_k(X, Y)$ by 0 if $k \neq n$, and \mathbb{Z} for $k = n$. Now consider the cases: $k > n$, $k < n - 1$, and the intermediate situations.

Cases $k > n$ or $k < n - 1$

We have

$$\cdots \to \{0\} \to H_k(Y) \to H_k(X) \to \{0\} \to \cdots ,$$

so $H_k(X) \cong H_k(Y)$.

Cases $k = n$, $n-1$

We have $H_{n+1}(X, Y) = \{0\} = H_{n-1}(X, Y)$, so the homology groups in dimensions n and $n - 1$ are connected by the finite exact sequence

$$\{0\} \to H_n(Y) \to H_n(X) \to H_n(X, Y) \to H_{n-1}(Y) \to H_{n-1}(X) \to \{0\} .$$

We also know $H_n(X, Y) \cong \mathbb{Z}$, so we actually have

$$\{0\} \to H_n(Y) \to H_n(X) \xrightarrow{j} \mathbb{Z} \to H_{n-1}(Y) \to H_{n-1}(X) \to \{0\} .$$

We have been omitting the names of the various homomorphisms, but now we need to refer to the function j_*. The image of j_* is some subgroup $p\mathbb{Z}$ of Z. There are two separate cases: Either $p = 0$ or else $p \neq 0$, and these are the two different cases for Theorem 2.
Sub-case $p = 0$.
By Lemma 2.2 (see the discussion following that lemma) our sequence breaks into two short exact sequences

$$\{0\} \longrightarrow H_n(Y) \longrightarrow H_n(X) \xrightarrow{j_*} \{0\}$$

and

$$\{0\} \longrightarrow \mathbb{Z}/\{0\} \longrightarrow H_{n-1}(Y) \longrightarrow H_{n-1}(X) \longrightarrow \{0\}.$$

This says that $H_n(X) \cong H_n(Y)$ and (by the “rank-nullity theorem” for finitely generated abelian groups) $\beta_{n-1}(Y) = \beta_{n-1}(X) + 1$, which is the first alternative in Theorem 2.

Sub-case $p \neq 0$.
Again by Lemma 2.2, the sequence breaks into short exact sequences

$$\{0\} \longrightarrow H_n(Y) \longrightarrow H_n(X) \xrightarrow{j_*} p\mathbb{Z} \longrightarrow \{0\}$$

and

$$\{0\} \longrightarrow \mathbb{Z}/p\mathbb{Z} \longrightarrow H_{n-1}(Y) \longrightarrow H_{n-1}(X) \longrightarrow \{0\}. $$

The subgroup $p\mathbb{Z}$ is isomorphic to \mathbb{Z}, so the first short exact sequence splits, to give $H_n(X) \cong H_n(Y) \times \mathbb{Z}$. Meanwhile, the group $\mathbb{Z}/p\mathbb{Z}$ is finite, so the rank-nullity theorem says $\beta_{n-1}(X) = \beta_{n-1}(Y)$.

This completes the proof of Theorem 2. \qed