Mayer-Vietoris Sequence

If a space X is the union of two open subsets A, B (or at least the interiors of A and B cover X), then there is a long exact sequence relating the homology groups of X to the homology groups of A, B and $A \cap B$. As with the excision theorem, the sequence still is valid if we are dealing with cell-complexes, or some other situation, where A, B are deformation retracts of open sets whose intersection deformation retracts to $A \cap B$.

$$
\begin{align*}
\Delta &\rightarrow H_n(A \cap B) \rightarrow I_* H_n(A) \oplus H_n(B) \rightarrow J_* H_n(A \cup B) \rightarrow \Delta_* H_{n-1}(A \cap B) \\
&\rightarrow \cdots
\end{align*}
$$

To define the homomorphism Δ_* (and later to prove the sequence exact), we need a lemma based on the idea of “small cubes” (see text for details).

Lemma 0.1. (Assuming $X = \text{int } A \cup \text{int } B$) Suppose w is an n-chain in X. Then there exists n-chains α, β in X and an $(n+1)$-chain c in X such that

- α is supported in A
- β is supported in B
- $w = \alpha + \beta + \partial w$ as chains

When we say a chain is “supported” in some set, we mean that the chain is a linear combination of singular cubes whose images lie in that set.

The functions I_* is based on the homomorphisms i_* induced by inclusions of $A \cap B$ into A and B respectively.

$$I_*[z] = (A i_*[z], B i_*[z])$$

which we can think of as

$$[z]_{A \cap B} \sim ([z]_A, [z]_B)$$

The function J_* is based on the homomorphisms j_* induced by inclusions of A and B into $A \cup B$, but notice the minus sign.

$$J_* ([\alpha], [\beta]) = A j_* [\alpha] - B j_* [\beta]$$

which we can think of as

$$([\alpha]_A, [\beta]_B) \sim [\alpha - \beta]_{A \cup B}.$$
We now define the function Δ_*. Suppose z is an n-cycle in X. By Lemma 0.1, we can find chains α, β, c such that
\[z = \alpha + \beta + \partial c , \]
where α is in A (i.e. α is supported in A) and β is in B. For notational convenience, replace β with $-\beta$, which, of course, also is supported in B. Since Z is a cycle, we know $\partial z = 0$, so we have
\[z = \alpha - \beta + \partial c , \]
and
\[0 = \partial z = \partial \alpha - \partial \beta + \partial \partial c = \partial \alpha - \partial \beta . \]
This says
- $\partial \alpha = \partial \beta$ as chains,
- $\partial \alpha$ is supported in A, but also it is supported in B, so $\partial \alpha$ is supported in $A \cap B$,
- and $\partial \alpha$ is a cycle in $A \cap B$.

We define
\[\Delta_*[z]_X = [\partial \alpha]_{A \cap B} . \]

DRAW SOME PICTURES!! to help visualize the function Δ_*. For example, if X is the n-sphere expressed as the union of $A=$upper hemisphere, and $B=$lower hemisphere, then all of X is an n-cycle, and this cycle is mapped by Δ_* to the $(n-1)$ dimensional homology class represented by the equator $(n-1)$-sphere.

Lemma 0.2 (Unassigned HW). Show the homomorphisms (in particular Δ_*) are well-defined.

We next consider how to prove that the sequence is exact. We work out one part below, another part is assigned HW, and the third part is “unassigned HW”.

Proof that the sequence is exact at $H_n(A \cup B)$. We have
\[I_* : H_n(A) \oplus H_n(B) \xrightarrow{J_*} H_n(A \cup B) \xrightarrow{\Delta_*} H_{n-1}(A \cap B) \rightarrow . \]
First,
\[([\alpha]_A, [\beta]_B) \sim [\alpha - \beta]_{A \cup B} \sim [\partial \alpha]_{A \cap B} . \]
But α is a cycle, so its boundary $= 0$.

©J. Simon, all rights reserved
The converse takes a little more work. Suppose \(z \) is a cycle in \(X \) and \(\Delta_*[z] = 0 \in H_{n-1}(A \cap B) \). This means that when we write
\[
z = \alpha - \beta + \partial c,
\]
there is an \(n \)-chain \(w \) in \(A \cap B \) such that \(\partial \alpha = \partial w \), i.e. \(\partial(\alpha - w) = 0 \).

Since \(w \) is a chain in \(A \cap B \), it is, in particular, supported in \(A \). Thus \(\alpha - w \) is a cycle in \(A \). Similarly, \(\beta - w \) is a cycle in \(B \). But then we have
\[
([\alpha - w]_A, [\beta - w]_B) \xrightarrow{J_*} [\alpha - w - (\beta - w)]_{A \cup B},
\]
which says \([z - \partial c] \in \text{image } J_* \). We are almost done ... We want \([z] \in \text{image } J_* \). But since \(z \) and \(z - \partial c \) differ just by a boundary, they define the same homology class, i.e.
\[
[z] = [z - \partial c] \in \text{image } J_*.
\]