0.1. **Don’t worry yet about “degenerate” cubes.** I suggest you study this section in the order: first = class notes, second = this handout, third = read the text and do the homework problems.

0.2. **Just to make sure you understand how “faces” are defined.** Suppose T is a singular 3-cube in X, that is $T : I^3 \to X$. Then T has six “faces”. Each face of T is a singular 2-cube, that is a map from $I^2 \to X$. The idea is easier than the notation we eventually end up using.

There are 3 directions in \mathbb{R}^3. In each direction, T has a “far” face and a “near” face: the text calls these the “back” and “front” faces respectively. We have to specify six functions from I^2 into X. So for each of the six functions, we have to decide where to send the points $(a,b) \in I^2$. Keep saying it over and over again: “Each face is a function. A given face is the function that sends points (a,b) to ...”:

<table>
<thead>
<tr>
<th>Direction</th>
<th>front face</th>
<th>back face</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-direction</td>
<td>$T(0,a,b)$</td>
<td>$T(1,a,b)$</td>
</tr>
<tr>
<td>y-direction</td>
<td>$T(a,0,b)$</td>
<td>$T(a,1,b)$</td>
</tr>
<tr>
<td>z-direction</td>
<td>$T(a,b,0)$</td>
<td>$T(a,b,1)$</td>
</tr>
</tbody>
</table>

0.3. **Define the “boundary”.** The boundary of an n-cube T is a linear combination of $(n-1)$-cubes. The boundary of the boundary of T is then a linear combination of $(n-2)$ cubes. We want that boundary to be 0. The “boundary” is actually a homomorphism from the group of n-cubes to the group of $(n-1)$-cubes, denoted $\partial_n : Q_n(X) \to Q_{n-1}(X)$. The claim is that the homomorphism $\partial_{n-1} \circ \partial_n : Q_n(X) \to Q_{n-2}(X)$ is the zero homomorphism.

Consider the case where T is a 2-cube. Then $\partial_2(T)$ is a linear combination of 1-cubes, and the boundary of that is a linear combination of 0-cubes, essentially a linear combination of points of X. Each point in this combination appears twice, and we need to make sure that it appears once with a $(+)$ and once with a $(-)$. That is accomplished by the identities $A_iA_j(T) = A_{j-1}A_i(T)$ etc. displayed in text (7.2.1).

Here is an example: T is a 3-cube. What is $(A_1A_3T)(s)$? (Note: don’t think of this as functional composition that is associative; A_i of
\((A_3T)(s)\) would be \(A_1\) of a point in \(X\), which doesn’t make sense. Also \(A_3T(s)\) would not make sense, since the domain of \(A_3T\) is \(I^2\), not \(I^1\).)

\(A_3T\) is a 2–cube. \(A_1(A_3T)\) is the front face of that 2–cube in the first coordinate direction. So \(A_1(A_3T)(s) = (A_3T)(0, s)\). Now, what does \((A_3T)\) do to a pair \((t, s)\)? It takes the pair to a point on the front face of \(I^3\) in the third direction, and then applies \(T\). So \((A_3T)(0, s) = T(0, s, 0)\). Similarly, \(A_1B_3T(s) = T(0, s, 1)\).

HOMEWORK: Prove the fourth identity in (7.2.1), that is, prove that the functions \(B_iA_j(T)\) and \(A_j−1B_i(T)\) are identical.

(Hint: Both of these are \((n−2)\)–cubes. So start with a point \((a_1, \ldots, a_{n−2})\) and see where it is sent under each of the two maps.)

0.3.1. **NOW we define the boundary homomorphism.** The function

\[\partial_n : C_n(X) \to C_{n−1}(X) \]

is given by its action on each basis element, that is its action on each \(n\)–cube:

\[\partial_n(T) = \sum_{i=1}^{n} (-1)^i ((A_iT) - (B_iT)) . \]

HOMEWORK: Prove that \((\partial \partial) = 0\). Since this will be true if and only if it is true for generators of \(Q_n(X)\), it is necessary and sufficient for you to prove that for each singular \(n\)–cube \(T\),

\[\partial_{n−1}(\partial_n(T)) = 0 \in C_{n−2}(X) . \]

(Hint: The proof follows directly from the identities (7.2.1); you just need to do the careful bookkeeping.)

0.4. **Provisional definition of cycles, bounds, and homology groups.** We are going to define the *cycles*, \(Z_n(X)\) to be those combinations of \(n\)–cubes that have 0 boundary. That is,

\[Z_n(X) = \ker \partial_n . \]

These \(n\)–cycles are trying to record the existence of \(n\)–dimensional “holes” in \(X\). But if a cycle is actually the boundary of something, then there’s no “hole” to record. With this in mind, we define a
boundary to be any combination of \(n \)–cubes that is itself the boundary of some combination of \((n + 1) \)–cubes. That is,

\[
B_n(X) = \text{image } \partial_{n+1}.
\]

We then define the homology groups of \(X \) by

\[
H_n(X) = \frac{Z_n(X)}{B_n(X)}.
\]

0.5. **But this give rise to too many cycles.** If we just proceed as above, we have too many cycles. For example, if the 1–cube \(f : [0, 1] \to X \) is a constant path, \(f(s) = x_0 \) for all \(s \in [0, 1] \), then \(f \) is a 1–cycle, that is \(f \in Z_1(X) \), since the front and back 0–faces of \(f \) are identical, so their difference is 0. On the other hand, \(f \notin B_1(X) \): the boundary of any 2–cube is a linear combination of four 1–cubes, so each element of \(B_1(X) \) is a combination of an even number of 1–cubes. A 1–cube that actually is a constant function is called a degenerate 1–cube.

Similarly, suppose \(f : [0, 1] \to X \) is a loop, i.e. path with \(f(0) = f(1) \). Consider the degenerate 2–cube \(T \), given by \(T(s, t) = f(t) \). Then

\[
\begin{align*}
A_1T(x) &= T(0, x) = f(x) & B_1T(x) &= T(1, x) = f(x) \\
A_2T(x) &= T(x, 0) = f(0) & B_2T(x) &= T(x, 1) = f(1)
\end{align*}
\]

So \(\partial_2T = 0 \), i.e. \(T \in Z_2(X) \); but \(T \) is not a boundary. The moral is that if we include degenerate \(n \)–cubes, then \(H_n(X) \) will be bigger than we want if our goal is to keep track of “holes” to describe the shape of \(X \). The solution is to get rid of these degenerate cubes from the beginning.

0.6. **Define degenerate \(n \)–cubes.** A singular cube \(T : I^n \to X \) is called degenerate if there is some index \(i \) such that the map \(T \) factors as \((x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n) \to (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \to X \).

In the book’s words, \(T \) is independent of the \(i^{th} \) coordinate.

Define \(D_n(X) = \text{subgroup of } Q_n(X) \) generated by all degenerate \(n \)–cubes. Now define

\[
C_n(X) = \frac{Q_n(X)}{D_n(X)}.
\]

After checking that the boundary homomorphism respects degeneracy (that is, the function \(\partial_n : Q_n \to Q_{n-1} \) takes the subgroup \(D_n \) into \(D_{n-1} \), we can define the \{adjusted, modified, improved, corrected\} version of \(\partial_n \) as a map of \(C_n(X) \to C_{n-1}(X) \). Then define \(Z_n \subseteq C_n \) and \(B_n \subseteq C_n \) and \(H_n(X) = Z_n(X)/B_n(X) \).

©2004, J. Simon, all rights reserved
0.7. **Homology groups of a one-point set** X. In dimensions $n \geq 1$, all cubes are degenerate. So

$$C_n(X) = \{0\} \implies Z_n(X) = \{0\} \implies H_n(X) = \{0\}.$$

That leaves dimension $n = 0$. There is only one 0–cube, so $Q_0(X) \cong \mathbb{Z}$. There are no “degenerate” 0–cubes, so $C_0 = Q_0 / \{0\} \cong \mathbb{Z}$. All 1–cubes in X are degenerate, so $C_1 = Q_1 / D_1 = \{0\}$. Thus $B_0 = \partial_1(C_1) = \{0\}$. So $H_0(X)$ will equal $Z_0(X)$, once we decide which 0–chains to call cycles. If you go back through the definitions, you will realize that we never defined the boundary of a 0–chain, so we don’t yet know which of those we will say have 0 boundary. That is for the next [sub-]section VII.2.2.