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Notes and Homework on

Locally Compact Spaces

Compact spaces (especially compact Hausdorff spaces) are extremely “nice” - as we
have already studied (optimization problems have solutions; continuous functions
are uniformly continuous; integrals exist). There is a more general class of spaces
that are important (for example, they include R

n) and that arise a lot in analysis
(see, for example, the “Riesz representation theorem”). These spaces are too big to
be compact, but they are compact when looked at from close-up. More precisely,...

Definition. A space X is locally compact if for each x ∈ X, there exists an open
neighborhood U of x with closure Ū compact.

When X is also Hausdorff, the property of local compactness becomes much
stronger. Let’s state this as a theorem.

Theorem 1. If X is locally compact and Hausdorff, x ∈ X, and U is any
neighborhood of x, then there exists a neighborhood V of x such that the closure V̄ is
compact and V̄ ⊆ U .

Remark. So not only does x have some neighborhood with compact closure, it has
many; in fact, it has arbitrarily small neighborhoods with compact closure.

The text proves this theorem by first embedding X in its “one-point
compactificaton”. Instead, let’s prove the theorem more directly, and then use this
tool to help understand the one-point compactification space. Ultimately, we are all
doing the same “dirty work”, just changing the order in which we encounter various
issues. (And I think the approach in these notes makes the issues clearer.)

Lemma 1.1. If X is Hausdorff, x ∈ X, and C is a compact subset of X with
x /∈ C, then there exist disjoint neighborhoods U(x) and V (C).

Proof. This is stated as Lemma (26.4) in the text. The technique for this proof is
something you should know well, useful for other theorems, so here is the proof.

Since X is Hausdorff, for each point y ∈ C, there are disjoint neighborhoods of x
and y; let’s call these Uy(x) and Vy(y). The set C is covered by {Vy : y ∈ C} and,
since C is compact, there is a finite subcover {Vy1, . . . , Vyn}. So U = Uy1 ∩ . . . ∩ Uyn

and V = Vy1 ∪ . . . ∪ Vyn are disjoint neighborhoods of x and C respectively.
�
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Lemma 1.2. In a Hausdorff space X, suppose U is a neighborhood of a point x and
bd U is compact. Then there exists a neighborhood V of x such that the closure
V̄ ⊆ U .

Proof. By assumption, bd U is compact. Then, by Lemma (1.1), there exist disjoint
neighborhoods W of x and W ′ of bd U . Note this implies that the closure W̄ is
disjoint from bdU . Let V = U ∩ W . Then

V̄ ⊆ Ū ∩ W̄ = (U ∪ bd U) ∩ W̄ = (U ∩ W̄ ) ∪ (bd U ∩ W̄ ) = (U ∩ W̄ ) ∪ ∅ ⊆ U .

�

Remark. The idea in the preceding lemma is that if we can separate x from the
boundary of a neighborhood U(x) then we can shrink U to a neighborhood that is
“deep” within U, that is the closure of the new neighborhood is contained in U .

Proof of Theorem 1. We have x ∈ U , where U is a given neighborhood of x. By
definition of local compactness, there exists a[nother] neighborhood W of x such
that the closure W̄ is compact. This makes any closed set contained in W̄ also
compact.

Consider the set V1 = U ∩W . We might hope that V1 is the desired neighborhood of
x; it certainly is contained in U . But its closure is, in general, not contained in U ,.
So we have to “trim it down” a little.

The set bd V1 is closed and contained in V̄1 ⊆ W̄ which is compact, so bd V1 is
compact. By Lemma 1.2, there exists a neighborhood V (x) such that the closure
V̄ ⊆ V1; but since V1 = U ∩ W , this says V̄ ⊆ U .

�

Remark (for the future). Along with finding neighborhoods of a point that lie deep
within a given one, we also can use the same kind of thinking (separate points from
compact sets, or separate compact sets from each other) to get large families of
nested neighborhoods. In fact, we can construct inductively a countable family of
neighborhoods of x inside a given U where the countable family is indexed by
rationals of the form j

2n
for all positive integers j and n, such that the containment

relations between the neighborhoods is the same as for the intervals [0, j

2n
]. This

ultimately lets us construct continuous functions from X to R that “separate points”
or “separate points from closed sets”. In a [locally] compact Hausdorff space, given
two points A, B or a point A and a closed set B missing A, there exists a
continuous function f : X → R such that f(x) = 0 and f(a) = 1 for all a ∈ A. This
property is sometimes called completely regular. We’ll see more theorems like this in
later sections.
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