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ABSTRACT
Building a predictive model based on historical Electronic Health
Records (EHRs) for personalized healthcare has become an active
research area. Benefiting from the powerful ability of feature ex-
traction, deep learning (DL) approaches have achieved promising
performance in many clinical prediction tasks. However, due to the
lack of interpretability and trustworthiness, it is difficult to apply
DL in real clinical cases of decision making. To address this, in
this paper, we propose an interpretable and trustworthy predictive
model (INPREM) for healthcare. Firstly, INPREM is designed as a
linear model for interpretability while encoding non-linear rela-
tionships into the learning weights for modeling the dependencies
between and within each visit. This enables us to obtain the contri-
bution matrix of the input variables, which is served as the evidence
of the prediction result(s), and help physicians understand why the
model gives such a prediction, thereby making the model more in-
terpretable. Secondly, for trustworthiness, we place a random gate
(which follows a Bernoulli distribution to turn on or off) over each
weight of the model, as well as an additional branch to estimate
data noises. With the help of the Monto Carlo sampling and an ob-
jective function accounting for data noises, the model can capture
the uncertainty of each prediction. The captured uncertainty, in
turn, allows physicians to know how confident the model is, thus
making the model more trustworthy. We empirically demonstrate
that the proposed INPREM outperforms existing approaches with
a significant margin. A case study is also presented to show how
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the contribution matrix and the captured uncertainty are used to
assist physicians in making robust decisions.
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1 INTRODUCTION
Precision medicine typically relies on personalized estimates of out-
come probabilities and treatment recommendations. Achieving this
goal highly depends on accurate, meaningful, and reliable outcome
prediction models. The broad adoption and immense accumulation
of Electronic Health Records (EHRs) have opened the possibility of
building such predictive models. However, the inherent issues of
EHR data such as temporality, heterogeneity, high-dimensionality,
and bias create obstacles to conventional data mining approaches.
Contrastively, deep learning shares the superior ability in mining
meaningful features from complicated data. Therefore, numerous
state-of-the-art (SOTA) predictive models based on deep learning
have been proposed for various clinical tasks [6, 22, 24].

Although these models achieved satisfactory performance, it is
difficult for physicians to understand the output of these models,
which creates obstacles for the transition from academic research to
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clinical applications. A primary reason is that deep learning based
models lack transparency, which can be further detailed as the lack
of both interpretability and trustworthiness needed in clinical
practice. These models suffer from two major issues: i) they are
unable to tell physicians which medical events are most relevant
to the output and ii) the models do not allow physicians to know
how confident the predicted probability can be trusted. These two
drawbacks of deep learning based models greatly undermine the
reliability of their predictions, as well as prohibit them from being
accepted in clinical practice. Consequently, it is crucial to develop
an interpretable and trustworthy model for clinical prediction tasks.

In clinical routine,model interpretability requires the model
being able to identify the contribution of each medical event to the
corresponding prediction results. Recently, various interpretable
predictivemodels have been proposed to facilitate decisionmakings,
such as RETAIN [6] and Dipole [22], achieving reasonable perfor-
mance. However,model trustworthinesswas overlooked in their
prediction results—they usually interpret the predicted probabilities
at the end of the pipeline (e.g., the output of softmax in classification
setting) as the confidence scores on the model prediction, which
have been proved to be erroneous in [11]. Conceptually, improving
the model trustworthiness requires predictive models being able to
represent uncertainty about the prediction. Nevertheless, standard
deep learning tools are deterministic functions [9], which means
that even if input with a randomly generated data point, the model
would still output a deterministic result. From another perspective,
without uncertainty at hand, we cannot know whether the model
is making sensible predictions or just a random guess. For example,
in the risk prediction setting, a model is likely to return a “low-risk”
result with a probability score of 0.05 on a truly “high-risk” patient
(red dash line in Fig. 1). Since the score is very close to zero, tradi-
tional models mistakenly treat it as a highly confident prediction,
thus preventing the patient from early diagnosis. However, if the
model provides an extra uncertainty estimation of the prediction
with low confidence, this case may be then specially processed with
an extra diagnosis, thereby a medical accident could be avoided.

Existing uncertainty in deep learning models could be roughly
classified into two categories, i.e., aleatoric uncertainty and epistemic
uncertainty [18]. Formally, aleatoric uncertainty is usually caused
by the noise inherent in the observations, including sensor noise,
record error or missing value; whereas epistemic uncertainty (also
referred to as model uncertainty) accounts for uncertainty over
the model parameters. In this sense, the model trustworthiness can
be obtained by estimating the epistemic uncertainty. It is worth
noting that the former cannot be reduced by observing more data,
but the latter can. There were several clinical predictive models [7,
8, 29] proposed to provide either aleatoric uncertainty or epistemic
uncertainty estimation alone, and our work novelly proposes to
model both.

To tackle all the aforementioned limitations, in this paper, we
develop an interpretable and trustworthy predictivemodel namely
INPREM for healthcare prediction applications. The proposed IN-
PREM can not only identify the contribution of each medical event
to the predictions but also capture two types of uncertainty (i.e.,
aleatoric uncertainty and epistemic uncertainty) within a single
framework. Specifically, the INPREM is designed as a linear model
for interpretability while encoding the non-linear relationships into

the learning weights for capturing the intricate dependencies be-
tween and within each visit. The learning weights are implemented
with a visit attention module for modeling dependencies between
visits and a variable attention module for modeling dependencies
within each visit. The contribution matrix can be obtained with the
attention matrices due to the whole linearity of the model. Based
on the interpretable model, we then place a random gate (following
a Bernoulli distribution) over each weight of the built network for
epistemic uncertainty estimation (trustworthiness), which extends
the model to be a Bayesian Neural Network (BNN). Afterward, an
additional branch is attached to the end of the pipeline to estimate
the noises of each data point (aleatoric uncertainty). With the help
of the Monto Carlo sampling and an objective function accounting
for the noises inherent in data, the proposed model can capture
both aleatoric uncertainty and epistemic uncertainty, meanwhile
maintaining high-precision and a low computation cost.

With the experiments conducted in diagnosis prediction and
disease risk prediction tasks, we demonstrate that the proposed
INPREM achieves significant performance improvement upon other
SOTA methods. In summary, the main contributions of this paper
are as follows:

• We propose INPREM, an end to end, novel, and robust model
to predict future health conditions for patients, which can not
only output the probability of the outcome but also provide
evidence and confidence in assisting the prediction.

• We empirically show that the proposed INPREMoutperforms
existing approaches with a significant margin, thanks to the
well-designed model structure and the uncertainty modeling.

• By visualizing and analyzing the contribution matrix of the
input and the probability distribution derived from Monto
Carlo sampling, we demonstrate that the extra information
provided by INPREM could help physicians make more ro-
bust decisions.

2 RELATEDWORK
Deep Learning for Mining EHRs: EHRs contain rich historical
health information about patients. Mining useful features from
EHRs to build predictive models for personalized healthcare is a
promising application. Recently, deep learning approaches, espe-
cially Recurrent Neural Networks (RNNs) and Convolutional Neural
Networks (CNNs), have been successfully applied to mining the
complicated EHR data. Attributed to the excellent capabilities in
temporal data modeling, RNNs were naturally used to model se-
quential EHRs for a variety of healthcare applications, including
risk prediction [6, 38], diagnosis prediction [4, 22], mortality pre-
diction [12], forecasting length of stay (LOS) [13], etc. Compared to
RNNs, CNNs focused more on the local dependence among EHRs,
which were applied to predict disease risk [2, 3] or other future sta-
tus of patients [34]. More recently, researchers exploited the effect
of attention mechanisms and posterior regularization in incorpo-
rating domain knowledge to guide deep models making accurate
predictions [5, 21, 23, 24, 39]. Besides, other advanced deep learning
model structures, such as Transformer [37], were also studied for
mining EHRs [32]. Compared to these works, our work innovatively
provides prediction power with not only interpretability but also
trustworthiness, both promoting the application in clinical practice.
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Figure 1: A case study of the proposed INPREM on the risk prediction task (illustrated with heart failure). The left part visu-
alized the contribution matrix of medical events (y-axis) along with different visits (x-axis). Note, we show each contribution
item with a distribution. The right part is the probability distribution derived from the learned variational parameters distri-
bution 𝑞∗ (w) (to be detailed in Section 3.3). The red dash line is a wrong and over-confident prediction from a deterministic
model, the blue dash line is the optimal decision threshold (with recall > 0.8), and the orange dash line is the mean value of
the probability distribution.

 

   -  -

  

Figure 2: An illustration of a patient’s EHR data. The EHR
data of one specific patient consist of a sequence of visits
v1, v2, · · · , vT . Each visit contains a subset of medical codes,
which could be represented by a binary vector vt ∈ {0, 1} |𝐶 | ,
where the 𝑖-th element is set to 1 (the orange point) if the
𝑡-th visit contains the medical code 𝑐𝑖 , otherwise 0 (the gray
point). The red point denotes the medical code of the target
disease for the risk prediction task.

It is worth noting that the interpretability was also formulated in
RETAIN [6], where a two-level attention mechanism was leveraged
to detect influential past visits and significant clinical variables
within those visits. By rethinking RETAIN, our work, on the one
hand, enhances the interpretability with a sparsification technique
[26] (will be introduced in Section 3.2) to attention weights; on
the other hand, it provides uncertainty estimation assisting the
trustworthy prediction.

Uncertainty Modeling: Capturing uncertainty is an indispens-
able part of many applications with deep learning, especially in
medical prediction scenarios. There is a great demand for uncer-
tainty estimation in a forecasting model. As a powerful tool in statis-
tics, the Gaussian process has been applied in many tasks to capture
uncertainty by modeling distributions over functions [27, 30, 35]. It
has been widely recognized that a neural network with its weights
treated as random variables could be regarded as a BNN [25]. As
BNNs are notoriously hard for inference, many variational infer-
ence techniques [16] are proposed to address this challenge, such
as stochastic variational inference and sampling-based variational
inference [28, 31, 36]. More recently, Lakshminarayanan et al. [20]
proposed an alternative to BNN-based methods named Deep En-
semble to quantify model uncertainty. However, all above methods
come with huge computational costs. Gal et al. [33] demonstrated
that the use of dropout in deep neural networks could be regarded
as an approximate Gaussian process. Our work adopts dropout to

provide uncertainty estimation due to its low computation cost and
high-efficiency.

It is worth noting that the work of Heo et al. [15] was with a
similar motivation of uncertainty modeling and interpretability to
our method, but with a different emphasis and task. They focused
more on the input-dependent uncertainty in attention-level for
generating attention for each feature with varying degrees of noise
based on the given input; whereas our model concentrates on the
output-level uncertainty, which makes the output logit of each
example be with varying degrees of noise based on itself. Besides,
the accuracy performance gains of our model are not only attributed
to the uncertaintymodeling but also amore efficient network design
with the support of interpretability.

3 METHOD
3.1 Basic Notation & Problem Defination
Before a detailed description, we summarize the notations used
in this paper. We treat the medical events taking place in EHR as
medical codes, which are denoted as 𝑐1, 𝑐2, · · · , 𝑐 |𝐶 | ∈ 𝐶 , where
|𝐶 | is the total number of unique medical codes. As illustrated in
Fig. 2, the EHR data of one specific patient consist of a sequence
of visits v1, v2, · · · , vT , where we denote the number of visits in
total as T. Each visit contains a subset of medical codes, and we
denote each visit as a binary vector 𝑣𝑡 ∈ {0, 1} |𝐶 | , where the 𝑖-th
element is set to 1 if the 𝑡-th visit contains the medical code 𝑐𝑖 ,
otherwise 0. The visits v1, v2, · · · , vT are stacked to form an input
matrix X ∈ {0, 1} |𝐶 |×𝑇 , which we use as the input for the network.

Based on the notations, we introduce the problems of diagnosis
prediction and disease risk prediction as follows:

Diagnosis Prediction is also referred as Encounter Sequence
Modeling (ESM) [4]. Specifically, given a sequence of visits v1, v2, · · ·
, vT , the goal of this task is to predict the medical codes occurring
at next visit 𝑣𝑡+1. In this sense, this task can also be regarded as a
multi-label classification problem.

Disease Risk Prediction can be seen as a special case of ESM
where only one disease outcome (the red point in Fig. 2) is pre-
dicted for binary classification. Different from diagnosis prediction,
another particular setting of this task is that the visit sequence
must be given before a hold-off window (as illustrated in Fig. 2) to
account for its clinical significance.
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Figure 3: An overview architecture of the proposed INPREM. The INPREM is designed as a linear model for interpretability
while encoding non-linear relationships into the learnable weights (see Eq. (3) and (4) for ease of understanding). Specifically,
the INPREM encodes the relationship between the prediction target to each of the medical events with a linear part (orange
line) and model the dependencies between and within each visit with a non-linear part (black line) for weighting the linear
relationship.

3.2 Basic Framework for Interpretability
We build our framework with a linear-part and a non-linear part.
To make our model interpretable, we propose to estimate the re-
lationship between the prediction target to each of the medical
events with a linear part, which facilitates us to account for the
contribution of each medical event to the decision. Since different
visits usually show implicit dependencies with regular patterns,
a non-linear part is proposed to capture such dependencies. An
overview architecture of the proposed INPREM is shown in Fig. 3.

3.2.1 A Linear Model for Interpretability. Given the input visit
sequence X, we employ an embedding layer to learn the representa-
tion of each visit, which models the relationships between different
medical codes within each visit:

E𝑣 = W𝑣X, (1)

where W𝑣 ∈ R𝑔×|𝐶 | is the parameters to learn, and E𝑣 ∈ R𝑔×𝑇 is
the learned visit embedding. Here, 𝑔 (𝑔 = 256 in our experiments)
is the dimension of the embedding space. Since the stacked multi-
head self-attention (to be detailed later) contains no recurrence thus
losing the order information of each visit, we similarly employ an
extra embedding layer to encodes such order information:

E𝑜 = W𝑜O, (2)

whereW𝑜 ∈ R𝑔×1 is the parameters to learn,O ∈ N1×𝑇 denotes the
orders of each visit in time, and E𝑜 ∈ R𝑔×𝑇 is the order embedding.

To develop a predictive model, a patient-level representation
E𝑅 ∈ R1×𝑔 needs to be obtained from the input embeddings first. To
this end, we encode the relations between the patient representation
(E𝑅 ) and input embeddings (E𝑣 and E𝑜 ) with a linear mapping:

E𝑅 = 𝛼
(
𝛽 ⊙ (E𝑣 + E𝑜 )

)⊤
, (3)

where 𝛼 ∈ R1×𝑇 encodes the non-linear dependencies between the
visits, 𝛽 ∈ R𝑔×𝑇 encodes the non-linear dependencies between med-
ical events within each visit, ⊙ denotes element-wise multiplication,
and the visit and order embeddings are fused with a simple addition
operation. The implementation of 𝛼 and 𝛽 will be described later.

With the patient representation, the logit serving for prediction
can be easily computed as:

𝑦 = W⊤
𝑐 E

⊤
𝑅 + 𝑏𝑐 , (4)

where W𝑐 ∈ R𝑔×𝑙 and 𝑏𝑐 ∈ R𝑙×1 are model parameters to learn,
and the value of 𝑙 (the number of classes to predict) depends on the

task. Then, the Softmax(·) is used to estimate the probability 𝑦∗ for
prediction:

𝑦∗ = Softmax(𝑦). (5)

Note, the risk prediction is naturally a binary classification, while
the diagnosis prediction can be treated as multiple binary classifi-
cations, since, it is a multi-label classification as mentioned above.

Interpretability for the Prediction: Thanks to the linearity
of the model, we can easily calculate the contribution of each med-
ical event by inferring from the predicted 𝑦 back to the input X.
According to Eqs. (1), (2), (3), (4), and (5), we can get:

𝑦∗ = Softmax(W⊤
𝑐 E⊤𝑅 + 𝑏𝑐 )

= Softmax
(
W⊤

𝑐

𝑇∑
𝑖=1

|𝐶 |∑
𝑗=1

𝛼 [𝑖]𝛽 [:, 𝑖] ⊙ (v𝑖 [ 𝑗]W𝑣 [:, 𝑗] + 𝑖W𝑜 ) + 𝑏𝑐
)
.

(6)
The contribution of each medical event is thus calculated as follows:

CM[𝑖, 𝑗] = W⊤
𝑐 (𝛼 [𝑖] 𝛽 [:, 𝑖] ⊙ W𝑣 [:, 𝑗]), (7)

where CM ∈ R𝑇×|𝐶 |×𝑙 is the contribution matrix, and we use
CM[𝑖, 𝑗] [𝑘] to denote the contribution of the 𝑗-th medical event in
the 𝑖-th visit to the prediction when the predicted class is 𝑘 .

3.2.2 Non-linear Part for Modeling Dependencies. As different med-
ical events usually happen in a sequence with specific patterns and
different visits reflect the different conditions of the patient, the
linear model suffers from insufficient ability in capturing such de-
pendencies between and within each visit, which, however, are
critical information for the prediction. We propose to encode the
non-linearity into 𝛼 and 𝛽 in Eq. (3). To this end, we first employ
stacked multi-head attention to strengthen the deep semantics in
medical events and visits, then output a hidden state with strong
representation power. After that, a sparse visit attention module
and a variable attention module are proposed to weigh the impor-
tance of different visits and different medical events within each
visit, respectively. We describe them next.

Stacked Multi-head Attention: The multi-head attention is
formed by multiple self-attention layers running in parallel for
enriching the representation of each visit. A self-attention layer is
fed with a set of key-query pairs, as well as corresponding values.
The key-query pairs are used to compute the inner dependency
weights, which are then used to update the values. Mathematically,
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the self-attention could be formalized as follow:

Att(𝑄,𝐾,𝑉 ) = 𝑉
(
Softmax(𝑄

⊤𝐾√
𝑑𝑘

)
)
,

𝑄 = W1 (E𝑣 + E𝑜 );𝐾 = W2 (E𝑣 + E𝑜 ); and 𝑉 = W3 (E𝑣 + E𝑜 ), (8)

where 𝑄,𝐾 ∈ R𝑑𝑘×𝑇 , 𝑉 ∈ R𝑑𝑣×𝑇 and W1,W2 ∈ R𝑑𝑘×𝑔 ,W3 ∈
R𝑑𝑣×𝑔 are corresponding learnable weights on the addition of the
input embeddings E𝑣 and E𝑜 for outputing𝑄 ,𝐾 , and𝑉 , respectively.
Note, we set 𝑑𝑘 = 𝑑𝑣 = 256 in this paper. The multi-head attention
concatenates multiple individual self-attention and fuses all the
subspace information by a fully-connected layer:

MultiHeadAtt(𝑄,𝐾,𝑉 ) = W𝑜Concat(Att1,Att2, · · · ,Att𝑚), (9)

where W𝑜 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑚𝑑𝑣 is the parameter to learn, and 𝑚 is a
hyperparameter that indicates the number of heads. Similar to the
Transformer [37], each multi-head self-attention is followed by a
feed-forward layer, which consists of two 1D convolutional layers
with kernel size 1 and ReLU activation. Besides, the dimensionality
of the input and output of the feed-forward layer is indicated by
𝑑𝑚𝑜𝑑𝑒𝑙 , while the inner-layer has 𝑑𝑖𝑛𝑛𝑒𝑟 channels. We employ a
residual connection [14] around the multi-head attention and the
feed-forward layer followed by layer normalization [1].

To strengthen the semantics, the multi-head attention module is
stacked S times for outputing the hidden state H ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑇 with
strong ability in representation.

Sparse Visit Attention Module: In the real diagnosis scenar-
ios, physicians typically put different weights on different visits
in the diagnosis process. In this sense, we propose a visit-level
attention mechanism to emphasize important visits. Besides, un-
der the requirements of clinical practice for interpretability, the
attention weights should be sparse, thus, the most important visits
can be highlighted. Based on the prior knowledge of diagnosing
habits and the requirements of model interpretability, we propose
a sparse visit attention module to guide the model to focus on the
visits containing important features. We augment the Softmax(·)
with a Sparsemax(·) [26] for pursuing a sparse attention weight.
Specifically, we first compute a correlation vector 𝛿 ∈ R1×𝑇 from
the hidden state, and then the visit attention weight 𝛼 ∈ R1×𝑇
can be obtained by applying a combination of Sparsemax(·) and
Softmax(·) which is formalized as follows:

𝛿 = W𝛿H + 𝑏𝛿 ,
𝛼 = (Sparsemax(𝛿) + Softmax(𝛿))/2, (10)

where W𝛿 ∈ R1×𝑑𝑚𝑜𝑑𝑒𝑙 and 𝑏𝛿 ∈ R1×𝑇 are the parameters to learn.
Variable Attention Module: The variable attention module is

designed to enforce the model paying attention to the important
features within a single visit. The idea is similar to RETAIN [6], yet
implemented more efficiently. To be specific, we share the same
hidden state with the visit and variable attention modules to save
computation cost, which leads to a similar performance compared
to equipping with a separate hidden state for each. The variable
attention weight 𝛽 ∈ R𝑔×𝑇 takes the dependencies among differ-
ent medical events within each visit into consideration, which is
formalized as follows:

𝛽 = tanh(W𝛽H + 𝑏𝛽 ) (11)

where W𝛽 ∈ R𝑔×𝑑𝑚𝑜𝑑𝑒𝑙 and 𝑏𝛽 ∈ R𝑔×1 are the parameters to learn.

3.3 Extension to BNN for Trustworthiness
BNNs implement the Bayesian probability theory with neural net-
works (NNs) which are usually treated as a tool for capturing epis-
temic uncertainty. The core idea of BNNs is to place a prior dis-
tribution 𝑝 (𝑓 ) over the space of a function 𝑓 , and then search for
the posterior distribution 𝑝 (𝑓 |DX,DY) over function space of 𝑓
given the dataset (DX,DY). In practical, the computation of the
posterior distribution with NNs is usually intractable. Researchers
resort to approximation to address this problem. Specifically, they
condition the model on a finite set of random variables w based on
the assumption that the functions depend on these variables alone
[10]. Given a new data point x∗, the prediction can be obtained by
integrating over all plausible parameters w as:

𝑝 (y∗ |x∗,DX,DY) =
∫

𝑝 (y∗ |𝑓 ∗)𝑝 (𝑓 ∗ |x∗,w)𝑝 (w|DX,DY)d𝑓 ∗dw.
(12)

However, the distribution 𝑝 (w|DX,DY) cannot be evaluated ana-
lytically as well. The variational inference is raised in this situation
to define an approximating variational distribution 𝑞(w), with a
regularzation that minimizes the Kullback-Leibler (KL) divergence
to make 𝑞(w) as close as posible to 𝑝 (w|DX,DY). In this way, Eq.
(12) can be rewritten as:

𝑞(y∗ |x∗) =
∫

𝑝 (y∗ |𝑓 ∗)𝑝 (𝑓 ∗ |x∗,w)𝑞(w)d𝑓 ∗dw. (13)

The objective function of variational inference L𝑣𝑖 , in this sense, is
equivalent to maximizing the log evidence lower bound:

L𝑣𝑖 =

∫
𝑞(w)𝑝 (𝑓 |DX,w)log𝑝 (DY |𝑓 )d𝑓 dw − KL(𝑞(w) | |𝑝 (w)) .

(14)
In this paper, we adopt the Bernoulli distribution to approximate

the variational distributions. Specifically, we place a random gate
(which follows the Bernoulli distribution to turn on or off) over the
weights of each layer in the framework mentioned above. Math-
ematically, we define the variational distribution 𝑞(W𝑘 ) for each
layer 𝑘 as:

W𝑘 = B𝑘 ⊙ [u𝑘,𝑗 ]
𝑍𝑘

𝑗=1, u𝑘,𝑗 ∼ Bernoulli(𝑝𝑘 ), (15)

where 𝑝𝑘 ∈ (0, 1) is the probability in Bernoulli, B𝑘 denotes vari-
ational parameters of the model, and 𝑍𝑘 indicates the number of
elements in the 𝑘-th layer. For the computation of L𝑣𝑖 , we employ
Monte Carlo integration to obtain an unbiased estimator L̂𝑣𝑖 of Eq.
(14), which makes the integral tractable:

L̂𝑣𝑖 =

𝑁∑
𝑖=1

𝐸 (y𝑖 , 𝑓 (x𝑖 , ŵ𝑖 )) − KL(𝑞(w) | |𝑝 (w)), ŵ𝑖 ∼ 𝑞(w), (16)

where 𝐸 (·) is the likelihood function, whose implementation de-
pends on tasks, (x𝑖 , y𝑖 ) is a data pair in the dataset (DX,DY), and
N is the size of the dataset. Now, we can replace the variational
distribution 𝑞(w) in Eq. (14) with the Bernoulli approximating vari-
ational distribution 𝑞(W𝑘 ). Besides, the KL divergence in Eq. (16)
can be approximated in the way as [11], which is implemented by
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an 𝐿2 regularization with a balancing weight of 𝜆:

𝑦𝑖 = 𝑓 (x𝑖 , 𝑞(w)), 𝑞(w) = {W1,W2, · · · ,W𝑘 }

L =

𝑁∑
𝑖=1

𝐸 (y𝑖 , 𝑦𝑖 ) + 𝜆
𝐿∑

𝑘=1
(∥W𝑘 ∥22 + ∥b𝑘 ∥22), (17)

whereW𝑘 , b𝑘 are weights and bias of the 𝑘-th layer of our frame-
work, and L is the number of layers in the network.

Placing the Bernoulli distribution over the parameters of the
model is only able to capture epistemic uncertainty. To further
capture aleatoric uncertainty, we adopt a Gaussian distribution
over the output logit 𝑦 in our framework. Specifically, we predict
an extra output for regressing the variance of 𝜎 of the Gaussian
distribution. Then, we use the Gaussian noise to corrupt the logit 𝑦
to output a logit 𝑦, which shares the ability in capturing aleatoric
uncertainty:

𝑦 = 𝑦 + 𝜎𝜖, 𝜖 ∼ N(0, 𝐼 ). (18)
Similar to the calculation of the integral mentioned above, we ap-
proximate the Gaussian distribution with Monto Carlo sampling.
Since only𝑦 is sampled from𝑦, the test time will not be dramatically
increased.

Formulation for Risk Prediction: The objective function (17)
for the risk prediction task can be rewriten as follows:

𝑦𝑡 = 𝑦 + 𝜎𝜖𝑡 , 𝜖𝑡 ∼ N(0, 𝐼 ),

L𝑟𝑖𝑠𝑘 = log
1
𝑇𝑚𝑐

𝑁∑
𝑖=1

𝑇𝑚𝑐∑
𝑡=1

exp(𝑦𝑖,𝑡 − log
𝑙∑
𝑗=1

exp(𝑦𝑖,𝑡, 𝑗 ))

+ 𝜆
𝐿∑

𝑘=1
(∥W𝑘 ∥22 + ∥b𝑘 ∥22), (19)

where 𝑖 is the index of data points,𝑇𝑚𝑐 denotes the number of times
for Monto Carlo sampling with 𝑡 indexing each sampling, and 𝑙 = 2
denotes the number of risk labels (i.e., 0, 1 in this case).

Formulation for Diagnosis Prediction: As aforementioned,
the diagnosis prediction task can be seen as a multi-label classifi-
cation problem, which can be further implemented with multiple
binary classifications (thus, 𝑙 also equals to 2). To make aleatoric
uncertainty depend on the data rather than the task, we share the
variance 𝜎 of the Gaussian distribution among all the binary classi-
fication tasks for each of data points. The objective function of the
diagnosis prediction task can be formulated as follows:

𝑦𝑙,𝑡 = 𝑦𝑙 + 𝜎𝜖𝑡 , 𝜖𝑡 ∼ N(0, 𝐼 ),

L𝑒𝑠𝑚 = log
1
𝑇𝑚𝑐

𝑁∑
𝑖=1

𝐶∑
𝑐

𝑇𝑚𝑐∑
𝑡=1

exp(𝑦𝑖,𝑐,𝑡 − log
𝑙∑
𝑗=1

exp(𝑦𝑖,𝑐,𝑡, 𝑗 ))

+ 𝜆
𝐿∑

𝑘=1
(∥W𝑘 ∥22 + ∥b𝑘 ∥22) . (20)

In the test phase, we perform Monto Carlo integration over the
learned variational distribution 𝑞∗ (w) with a Softmax(·) activation
to estimate the prediction:

𝑝 (𝑦 = 𝑙 |x,DX,DY) ≈
1

𝑇𝑡𝑒𝑠𝑡

𝑇𝑡𝑒𝑠𝑡∑
𝑡=1

Softmax(𝑓 ŵ𝑡 (x) + 𝜎𝑡𝜖),

ŵ𝑡 ∼ 𝑞∗ (w), 𝜖 ∼ N(0, 𝐼 ), (21)

where𝑇𝑡𝑒𝑠𝑡 denotes the number of times for Monto Carlo sampling
with 𝑡 indexing each sampling.

In the experiment parts, we qualitatively evaluate the ability of
INPREM in capturing epistemic uncertainty, which assists physi-
cians in making trustworthy decisions. Since the robustness of
INPREM to data noise is not the focus of this work, we do not
present experiments results on aleatoric uncertainty. However, we
present quantitative indicators of both the aleatoric uncertainty
and epistemic uncertainty in Appendix 6.4 for clinical usage.

4 EXPERIMENTS
In order to evaluate the effectiveness of the proposed INPREM,
we conduct experiments on two datasets, including the publicly
available MIMIC-III [17],1 and a real-world longitudinal EHR data-
base with three cohorts, including Heart Failure, Diabetes, and
Chronic Kidney Disease (CKD). See Appendix 6.1 for details of all
datasets. Moreover, several analytical experiments and a case study
are presented to show the interpretability and trustworthiness of
our model.

4.1 Baselines
In order to fairly evaluate the effectiveness of the proposed INPREM,
we compare it with several SOTA methods, including CNN, RNN,
RNN with attention mechanism, RETAIN [6], and Dipole [22]. We
give a detailed description of all these methods in Appendix 6.2 due
to the limitation of lengths. Besides, in ablation experiments, we
also present three variants of INPLIM as follows:

INPREM𝑏−: A variant of the proposed INPREM that does not
perform Bernoulli approximating variational inference.

INPREM𝑠−: This version of the INPREM employs the standard
Softmax(·) instead of combining Sparsemax(·) in the visit attention
module.

INPREM𝑜−: In this variant of the INPREM, we remove the order
embeddings entirely.

The implement details of all baselines and our methods are pre-
sented in Appendix 6.3.

4.2 Evaluation Metrics
Diagnosis Prediction: For this task, we use the same metrics pro-
posed in [24], which are visit-level precision@k and code-level ac-
curacy@k. The visit-level precision@k is defined as the number of
correct medical codes among the ranked top k predictions divided
bymin(k,|y𝑡 |), where |y𝑡 | is the number of category labels appeared
in the (𝑡+1)-th visit. We report the average visit-level precision@k of
all visits. The code-level accuracy@k measures the overall accuracy
of predictions, which is defined as the number of correctly predicted
codes divided by the total number of predicted codes among the
ranked top k predictions.

Risk Prediction: The positive/negative labels in the dataset of
this task are usually imbalanced. Therefore, we use Area Under
Receiver Operator Curve (AU-ROC) to measure the performance
of all approaches for this task.

1https://mimic.physionet.org/
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Table 1: Results of Diagnosis Prediction Task on the MIMIC-III dataset [17]

Model Code-Level Accuracy@k Visit-Level Precision@k

5 10 15 20 25 30 5 10 15 20 25 30

Baselines

CNN 0.6399 0.5840 0.6267 0.6984 0.7626 0.8160 0.3026 0.4824 0.6025 0.6921 0.7590 0.8140
RNN 0.6213 0.5686 0.6196 0.6905 0.7550 0.8069 0.2938 0.4700 0.5947 0.6841 0.7541 0.8082
RNN+ 0.6214 0.5672 0.6147 0.6884 0.7559 0.8070 0.2938 0.4686 0.5903 0.6821 0.7534 0.8079
RETAIN 0.6284 0.5760 0.6318 0.7018 0.7687 0.8212 0.2959 0.4758 0.5974 0.6855 0.7584 0.8137
Dipole 0.6325 0.5758 0.6203 0.6921 0.7571 0.8083 0.2986 0.4746 0.5950 0.6841 0.7535 0.8083

INPREM

INPREM 0.6886 0.6247 0.6625 0.7306 0.7878 0.8314 0.3204 0.4992 0.6179 0.7080 0.7728 0.8199
INPREM𝑏− 0.6796 0.6152 0.6593 0.7269 0.7848 0.8290 0.3175 0.4892 0.6162 0.6973 0.7706 0.8185
INPREM𝑜− 0.6891 0.6253 0.6626 0.7306 0.7890 0.8308 0.3210 0.4991 0.6189 0.7082 0.7733 0.8193
INPREM𝑠− 0.6902 0.6241 0.6626 0.7302 0.7881 0.8307 0.3204 0.4985 0.6184 0.7081 0.7725 0.8193

Table 2: AUROC of the Risk Prediction Task

Model Heart Failure Diabetes CKD

Baselines

CNN 0.7194 0.6490 0.7478
RNN 0.7243 0.6587 0.7472
RNN+ 0.7228 0.6483 0.7464
RETAIN 0.7312 0.6596 0.7508
Dipole 0.7333 0.6608 0.7537

INPREM

INPREM 0.7590 0.6757 0.7745
INPREM𝑏− 0.7525 0.6688 0.7706
INPREM𝑜− 0.6991 0.6270 0.7366
INPREM𝑠− 0.7589 0.6758 0.7744

4.3 Performance Analysis
Table 1 reports the visit-level precision@k and code-level accuracy@k
of both INPREM and baselines on the diagnosis prediction task. We
can observe that the proposed INPREM outperforms all baselines
on both evaluation metrics. Specifically, the code-level accuracy
improves 5.88% and the visit-level accuracy improves 7.86% at 𝑘 = 5
when comparing the best results of our method with the best results
of baseline methods. Another observation is that even though the
INPREM𝑏− has a better performance than all baselines on all values
of k, it still performs worse than INPREM. This proves that both the
designed model structure and uncertainty modeling are effective
to improve the prediction performance. Comparing INPREM with
INPREM𝑜−, we find that the proposed order embedding module
damages the performance on the diagnosis prediction task in some
values of k. The reason may be that the number of visits is relatively
small (average 2.67 as shown in Table 4 in the Appendix) in the
MIMIC-III dataset [17], on which the effect of the order information
does not bring into play.

Table 2 lists the AUROC of INPREM and baselines on the risk
prediction task. Comparing with all baselines, we find that the
proposed INPREM achieves the best performance. Specifically, the
AUROC improves 3.50% on the Heart Failure cohort, 2.26% on the
Diabetes cohort, and 2.75% on the Chronic Kidney Disease cohort
when comparing the best results of our method with the best results

of baseline methods. An important observation is that INPREM𝑜−
performs worse than any other methods, including other variants of
INPREM and all baselines methods. This is because the length of the
sequence in the datasets of risk prediction task is long (average visit
number of a patient is 15.03, 16.92, and 16.44 in the three cohorts,
respectively, see Table 5 in theAppendix). Thismay be that the order
embedding module is very important when the sequence is long.
Similar to the diagnosis prediction task, the INPREM has a better
performance than INPREM𝑏− because of modeling uncertainty.

We also find that INPREM and INPREM𝑠− achieve similar perfor-
mance on both tasks. However, INPREM has better interpretability
than INPREM𝑠−, which will be discussed in the next subsection.
In summary, benefiting from the well-designed model structure
and uncertainty modeling, the proposed INPREM achieves the best
performance compared with all the SOTA methods.

4.4 Interpretability Analysis
Table 3 lists the top-10 medical codes that are most relevant to heart
failure in the test set of the Heart Failure cohort. Then, a group of
cardiologists is invited to verify these medical events. As expected,
all medical events in Table 3 are able to accompany or increase the
risk of heart failure.

In order to evaluate the sparsity of the proposed sparse visit atten-
tion module, we visualize the first 16 dimensions of 𝛼𝛽⊤, which are
shown in Fig. 4. The left heatmap of each example is the attention
weights without Sparsemax(·), while the right one is that being ap-
plied with Sparsemax(·). We can observe that in each example, the
right one is sparser than the left one. We find that similar features
are highlighted when equipping with or without Sparsemax(·), yet
the sparse attention weights are able to provide more distinct dis-
crimination. This means the proposed sparse visit attention module
is able to effectively enhance the interpretability of the model.

4.5 Uncertainty Analysis
In order to prove that the INPREM is capable of capturing epis-
temic uncertainty, we visualize the probability distribution of the
prediction derived from the learned variational parameter distribu-
tion 𝑞∗ (w) and that of 200 INPREMb− ensembles, which are shown
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Table 3: The Top 10 Medical Events with the Highest Contri-
bution to the Heart Failure in the Test Set

ICD-9 Code Description

V43.3 Heart Valve Replaced by Other Means
V42.2 Heart Valve Replaced by Transplant
424.0 Mitral Valve Disorders
V12.50 Personal History of Unspecified Circulatory Disease
V45.02 Automatic Implantable Cardiac Defibrillator In Situ
412 Old Myocardial Infarction
571.5 Cirrhosis of Liver Without Mention of Alcohol
410.10 Acute Myocardial Infarction of Other Anterior Wall,

Episode of Care Unspecified
426.3 Other Left Bundle Branch Block
425.4 Other Primary Cardiomyopathies

Figure 4: Heatmaps of attention weights 𝛼𝛽⊤ [: 16, : 16].
The left one is the attention weights without applying
Sparsemax(·), while the right one is with Sparsemax(·) ap-
plied. The white blocks are values which are lower than the
minimum weight in the left heatmap.

Figure 5: Predicted probability distribution of 200
INPREMb− (non-Bayesian version of the original INPREM)
ensembles and that derived from the learned variational
parameters distribution 𝑞∗ (w) of INPREM. We can find that
the proposed INPREM is able to capture uncertainty similar
to that of ensembles.

in Fig. 5. We find that the proposed INPREM is able to capture
uncertainty similar to that of ensembles.

Figure 6: Top row shows two predicted probability distribu-
tions on the risk prediction task. Bottom row shows two
examples of the predicted max probability distribution on
the diagnosis prediction task. These two sets of examples
proved that the captured uncertainty of our model is able to
help physicians in clinical decision-making.

We are also interested in if the captured epistemic uncertainty
could assist physicians in decision-making. Therefore, following
the analytical method in [8], we first determine an optimal decision
threshold (shown with the blue dash line in right part of Fig. 1) on
the validation set of the risk prediction task for heart failure. The
optimal decision threshold requires the recall of positive samples
higher than 80%. Subsequently, two examples are visualized in
the top row of Fig. 6. We find that the predicted results with high
uncertainty lead to confusing decisions, which is in accordance
with clinical practice. Another set of examples on the diagnosis
prediction is also visualized in the bottom row of Fig. 6, which
shows a similar situation.

4.6 Case Study
In order to further show the transparency of the proposed INPREM,
we visualize the result of a case study (illustrated in Fig. 1) on the
test set of the Heart Failure cohort. The left part of Fig. 1 shows that
the Automatic Implantable Cardiac Defibrillator In Situ (AIC) is the
most relevant event to the heart failure, whileAcute Pharyngitis (AP)
shows a negative value of contribution, which means that the AP
has no apparent correlations to the target disease. We also find that
the distributions of each contribution item in contribution matrix
are similar among the same events, but distinct among different
events.

In the right part of Fig. 1, we show the predicting probability
distribution. We find that a deterministic model is quite possible to
output a risk lower than the optimal decision threshold. Benefiting
from both the unbiased estimation of the probability distribution
and the captured uncertainty, our model may increase the diagno-
sis accuracy to some extent, meanwhile, arouse the attention of
physicians to the case with high uncertainty.

This case study demonstrates that the extra information provided
by INPREM not only helps physicians in decision-making but also
increases their confidence of the decision.
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5 CONCLUSIONS
In this work, a novel predictive deep learning model namely IN-
PREM was proposed, which focused on three dominant features of
clinical predictive models, including performance, interpretability,
and trustworthiness. We experimentally proved that the INPREM
outperformed all SOTA approaches in terms of accuracy by con-
ducting experiments on the publicly available MIMIC-III dataset
and a real-world EHR database. The top-10 medical codes most
relevant to heart failure were presented to show the interpretability
of our proposed method. Moreover, by comparing the predicting
probability distribution derived from the learned variational param-
eters distribution with that of the deep ensembles, we demonstrated
that the INPREM was able to capture uncertainty. Last but not least,
we used a case study to show the interpretability of the INPREM,
as well as how to use the contribution matrix and the probability
distribution to assist physicians in decision-making.
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6 APPENDIX
In this section, we present more details regarding the reproducibil-
ity and practical usage of our model. Specifically, we present the
datasets we use for experiments in Section 6.1. And then, the im-
plementation details about the parameters we used for training are
presented in Section 6.3. Finally, in Section 6.4, we present quantita-
tive indicators in representing aleatoric uncertainty and epistemic
uncertainty to assist the quantitative analysis in clinical routine.

6.1 Datasets
Diagnosis Prediction Dataset: The MIMIC-III dataset [17] con-
sists of medical records of 7499 patients from the Intensive Care
Unit (ICU). Patients who have at least two visits are chosen in the
dataset. As mentioned in Section 3.1, the goal of the diagnosis pre-
diction task is to predict the medical codes of the next visit. We use
the nodes in the second hierarchy of ICD-9 codes2 as the category
labels, which is similar to [22, 24]. Table 4 lists the details about
MIMIC-III.

Three Risk Prediction Datasets: We identify three cohorts
from a real-world EHR database, including Heart Failure, Diabetes,
and Chronic Kidney Disease. For each cohort, we first identify a set
of case-patients and then select several control patients for each
patient case according to the demographic information. We set the
number of controls for each case to five for the Heart Failure cohort,
and three for Diabetes and Chronic Kidney Disease (CKD) cohorts.
We set the hold-off windows (as Fig. 2 shows) for all cohorts to 180
days. Table 5 shows the details of the three datasets.

Table 4: Statistics of the MIMIC-III Datasets [17] for Diagno-
sis Prediction

MIMIC-III

# of patients 7499
# of visits 19911
Avg.# of visits per patient 2.67

# of unique ICD-9 codes 4880
Avg.# of ICD-9 codes per visit 13.06
Max.# of ICD-9 codes per visit 39

# of category codes 171
Avg.# of category codes per visit 10.16
Max.# of category codes per visit 30

6.2 Baseline Description
In the below, we give a detailed description of all baselines we used
in the experiments.

CNN: A baseline NN that consists of three convolutional layers
with 256 channels and the kernel size varying from 3 to 5. An
output layer is applied to predict the probability of each class. ReLu,
dropout, and normalization layers are also employed to obtain
better performance.

RNN: We first obtain the input embeddings as Eq. (1), then feed
the embeddings to a Long Short-Term Memory (LSTM) layer. The
2http://www.icd9data.com

hidden states produced by LSTM are directly used to predict results
by a linear classifier.

RNN+: The difference between RNN+ and RNN is that RNN+
uses a location-based attention mechanism [22] to combine the
hidden states before the output layer.

RETAIN[6]: RETAIN is a SOTA predictive model. It employs
a two-level attention mechanism, which could enhance both the
performance and interpretability of the model.

Dipole[22]: Dipole uses a bi-directional RNN with three atten-
tion mechanisms. We select the local-based attention to obtain
the final context vector because this version of Dipole has been
proved to perform better in [22]. The embedding layer of Dipole is
a multi-layer perceptron (MLP) layer with ReLu.

6.3 Implementation Details
For each task, we randomly split each dataset into training, vali-
dation, and testing sets five times in a 75:10:15 ratio. For training
all approaches, we use Adam [19] with the batch size of 32 and the
learning rate of 0.0005. The weight decay is set to 𝜆 = 0.0001 and
the dropout rate is set to 0.5 for all approaches. We set the dimen-
sions of embeddings and the hidden state of all baselines to 256. For
our model, we set 𝑑𝑚𝑜𝑑𝑒𝑙 , 𝑑𝑖𝑛𝑛𝑒𝑟 = 256, which are the same as all
baselines. And, we set the probability of Bernoulli distribution 𝑝𝑘 to
0.5. The times of Monto Carlo sampling in the training phase (𝑇𝑚𝑐 )
is set to 50, and in the test pahse (𝑇𝑡𝑒𝑠𝑡 ) to 100. For the stacked
multi-head attention module in our model, we set the number of
head𝑚 = 2 and the number of stacking times S = 2. All approaches
are implemented with PyTorch 1.0 on two Nvidia Titan XP GPUs.

Table 5: Statistics of Three Datasets for Risk Prediction

Datasets Heart Failure Diabetes CKD

# of cases 1150 1095 2005
# of controls 5750 3285 6015
# of visits 103848 74146 131854
Avg.# of visits per patient 15.05 16.92 16.44
# of unique ICD-9 codes 4482 4011 4658
Avg.# of codes per visit 2.32 2.38 2.37

6.4 Quantitative Indicators of Aleatoric
Uncertainty and Epistemic Uncertainty

We present quantitative indicators of aleatoric uncertainty and epis-
temic uncertainty. Aleatoric uncertainty: The aleatoric uncer-
tainty can be measured by the predicted variance 𝜎 of the Gaussian
noise as:

𝜎∗ =
1

𝑇𝑡𝑒𝑠𝑡

𝑇𝑡𝑒𝑠𝑡∑
𝑡=1

𝜎𝑡 . (22)

The estimation of aleatoric uncertainty makes INPREM robust to
data noise. In future work, we will demonstrate that our INPREM
can work well even with the EHR records being largely corrupted.

Epistemic uncertainty: Since we perform 𝑇𝑡𝑒𝑠𝑡 Monto Carlo
samplings for each data point in the test phase, which leads to
𝑇𝑡𝑒𝑠𝑡 predictions, we propose two ways to quantize the epistemic
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Figure 7: Correlation of the entropy (𝐸𝑝𝑖𝜖 ), MC standard de-
viation (𝐸𝑝𝑖𝜍 ), and the ensemble standard deviation.

uncertainty. The first one is to use the entropy of the probability 𝑝𝑖
predicted by Eq. (21), which can be calculated as follow:

𝐸𝑝𝑖𝜖 = −
2∑

𝑖=1
𝑝𝑖 log(𝑝𝑖 ) . (23)

The second quantization method is to compute the standard devi-
ation of the total 𝑇𝑡𝑒𝑠𝑡 predictions as 𝐸𝑝𝑖𝜍 . Note that we can also
obtain 𝑇𝑡𝑒𝑠𝑡 contribution matrices for each prediction, which fur-
ther enable us to quantize the epistemic uncertainty 𝐸𝑝𝑖𝜍 for the
contribution matrices.

To verify that both the 𝐸𝑝𝑖𝜖 and 𝐸𝑝𝑖𝜍 could take effect equally
in measuring the epistemic uncertainty, we visualize the Pearson
correlation coefficient of 𝐸𝑝𝑖𝜖 , 𝐸𝑝𝑖𝜍 , and the standard deviation
of probability distribution derived from ensembles in Fig. 7. We
find that they have a quite high linear correlation with each other,
which verifies that both the proposed 𝐸𝑝𝑖𝜖 and 𝐸𝑝𝑖𝜍 can provide
quantitative indicators for assisting the physicians in decision mak-
ing.
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