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ABSTRACT
Automated systems for detecting harmful social media content

are afflicted by a variety of biases, some of which originate in their
training datasets. In particular, some systems have been shown
to propagate racial dialect bias: they systematically classify con-
tent aligned with the African American English (AAE) dialect as
harmful at a higher rate than content aligned with White English
(WE). This perpetuates prejudice by silencing the Black commu-
nity. Towards this problem we adapt and apply two existing bias
mitigation approaches: preferential sampling pre-processing and
adversarial debiasing in-processing. We analyse the impact of our
interventions on model performance and propagated bias. We find
that when bias mitigation is employed, a high degree of predictive
accuracy is maintained relative to baseline, and in many cases bias
against AAE in harmful tweet predictions is reduced. However, the
specific effects of these interventions on bias and performance vary
widely between dataset contexts. This variation suggests the unpre-
dictability of autonomous harmful content detection outside of its
development context. We argue that this, and the low performance
of these systems at baseline, raise questions about the reliability
and role of such systems in high-impact, real-world settings.
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1 INTRODUCTION
As the body of social media content grows explosively, so does

the problem of harmful content: hate speech, cyberbullying, and
online abuse, among others [50]. Manual content moderation can
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be expensive for platforms given the volume and rates of posted
content, and is both tedious and traumatic for human moderators
[19, 22]. Waiting for users to flag content as inappropriate allows
harmful content to proliferate with potentially widespread con-
sequences; this has prompted interest in content moderation ex
ante, as content is posted and before it reaches an audience [5, 10].
Recently, the COVID-19 pandemic has sent home thousands of
human moderators, many of whom are not allowed to work from
home [39]. For all these reasons, automated detection of harmful
content by artificial intelligence (AI) systems has been the subject
of considerable academic and industrial research [25, 41, 50].

1.1 Racial Dialect Bias
Large platforms such as Facebook, Google (including YouTube),

and Twitter have turned to automation as a crucial element of
“industrial” content moderation [9]. They use automated screening
to flag content for human review even before it is flagged by users [5,
9]. One key reason for the introduction of these automated systems
was to reduce the prevalence of hateful speech and incitements of
violence against marginalised communities. In other words, one of
their central goals is to protect historically disadvantaged groups.
Yet they have been shown to perpetuate biases against various
marginalised communities which arise from datasets on which they
are trained [14, 17, 34, 48].

Previous research has measured racial dialect bias in harmful
tweet detection systems [14, 48]. Such research focuses on Twitter
due to high availability of labeled harmful tweet corpora [58] and be-
cause Twitter is an important space for Black activism and activism
in general [48], but we expect this issue to exist on other online
platforms as well. Tweets with high predicted African-American
English (AAE) alignment 𝑝𝐴𝐴𝐸 are found to be classified as harmful
at a higher rate than tweets with high predicted White English (WE)
alignment 𝑝𝑊𝐸 or low 𝑝𝐴𝐴𝐸 [14, 48]. These alignments are calcu-
lated using a model [6] that was trained on a corpus of 60 million
geolocated tweets using US Census data as topics. The model is
shown to accurately follow known linguistic phenomena [6].

Twitter can take a range of actions if a tweet violates their rules,
which protect against hate speech, incitements of violence, and
targeted harassment of an individual or group, among other things
[55]. They may hide the tweet behind an interstitial warning, limit
its visibility in search results and feeds, or even require its removal
and hide it in the meantime [54]. However, each of these enforce-
ment actions, when differentially applied across populations, could
amplify societal injustices [48], either by enforcing stereotypes
held by users or by outright silencing minority communities. It
is painfully ironic that harmful tweet detection systems may sys-
tematically diminish the voice of the Black community given that
they exist, at least in part, to shield this and other marginalised
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communities from harm. Furthermore, bias may reduce their abil-
ity to truly detect harmful content by rewarding them for simply
associating linguistic properties of AAE with harmful labels.

1.1.1 Dialect Alignment as a Continuous Variable In the fairness
and bias sphere, a protected attribute is a characteristic that is pro-
tected against discrimination, and against which bias is suspected
or known to exist [40]. Race is a widely accepted protected attribute,
but in this context the race of a tweet’s author is often unknown; the
best we can do without additional information is to estimate proba-
bilities of dialect alignment such as 𝑝𝐴𝐴𝐸 [6]. AAE itself contains
much regional and social variation [16], and the dialect estimation
tool is probabalistic and so has some margin for error.

Most previous research dichotomises data by considering a tweet
to be highly AAE aligned if the dialect model assigns it 𝑝𝐴𝐴𝐸 > 0.8.
An exception is Sap et al. [48], who treat 𝑝𝐴𝐴𝐸 as continuous when
evaluating dataset bias; however, they too dichotomise the data for
model evaluation. Using only high-confidence dialect predictions
reduces the risk of compounding errors from dialect estimation and
harm prediction. However, this approach is only effective in large
and diverse datasets, where an appreciable number of tweets satisfy
this constraint. Harmful tweet corpora are smaller and less repre-
sentative, and as such often contain too few “high-AAE” tweets for
meaningful analysis: three of the datasets considered in this study
contain a mere 26 [21], 14 [23], and 2 [62] instances of such tweets.
In these datasets, the problems associated with dichotomisation,
which include reduced statistical power and obfuscation of varia-
tion within groups [1], cannot be ignored. It is also worth noting
that low dialect diversity in training datasets unsurprisingly causes
bias and poor performance on dialect-aligned input in systems [6].

In this paper we treat 𝑝𝐴𝐴𝐸 as continuous in line with precedent
[48] and also assert that this is justified by empirical observation
(See Appendix §A.1). This allows us to evaluate bias by compar-
ing predictions to dataset labels while preserving statistical power,
whereas existing research on racial dialect bias [14, 48] either relies
on evaluation via external datasets or loses power by dichotomisa-
tion at the model bias evaluation stage. Our treatment of 𝑝𝐴𝐴𝐸 as
continuous has considerable implications: there is no privileged or
unprivileged group, so our definitions of fairness and bias mitigation
efforts must address 𝑝𝐴𝐴𝐸 itself rather than group membership.

1.1.2 Bias Mitigation The fairness of AI systems in general is under
intense scrutiny [27, 28, 40, 57, 59, 63]. A “first wave” of algorithmic
accountability is working to address known bias and discrimination
in AI systems, while a “second wave” asks broader questions about
the role and governance of autonomous systems [43]. Addressing
racial dialect bias in harmful content moderation is particularly
relevant and important of late as the world reckons with systemic
racism, as recently highlighted by the death of George Floyd, and far
too many other Black people, at the hands of police in the US [47].
Vigilant rejection of online content that incites or perpetuates ha-
tred of any kind, particularly that aimed at Black people or other
marginalised groups, is an important step toward dismantling in-
stitutional racism. Yet to systematically silence Black voices online
in pursuit of this goal is categorically counter-productive.

It may be possible to mitigate racial dialect bias in automated
harmful tweet detection using technical interventions. Automated
bias mitigation has been explored in other machine learning (ML)

contexts [40], though it has been criticised for being incomplete
at best, and at worst for obscuring the root problem and inducing
unforeseen consequences [45]. Some research has explored the
problem of racial dialect bias in detecting harmful online content
[14, 48], but little attention has been paid to addressing this bias.
Doing so is not a straightforward task: the continuity of dialect,
nuance of language processing, and challenges of defining “harm”
demand new and adapted approaches.

We apply automated bias mitigation techniques to racial dialect
bias in harmful tweet detection systems. In keeping with previous
research, our efforts are focused only on this specific type of bias,
although these systems are afflicted by many other types, some
of which may have yet to be clearly identified [17, 42, 64]. We
evaluate the bias mitigation approaches in terms of their ability
to reduce dialect bias, measured in a variety of ways, and their ef-
fects on classification performance. While they show some promise,
both the extent of bias reduction and the impact on classification
performance are highly variable across dataset contexts: different
ways data are collected, pre-processed, and annotated according
to dataset creators’ research goals. These differences are in turn
responsible for differences in dataset size, class definitions, and dis-
tributions of linguistic features such as dialect, among other things.
We argue that this variation and the associated uncertainty in harm-
ful content detection systems raise important questions about the
role of such systems in society, and underscore the difficulties of
deploying opaque autonomous systems with real-world impacts.

2 BACKGROUND
2.1 Harmful Content Detection
2.1.1 Motivation Although some have argued that autonomous
detection of harmful content is necessary, it is a difficult task [50].
The terminology used to describe harmful content is abstract and
inconsistent [15, 50] and harm itself is a subject-dependent, broadly
defined category [61, 65]. Automated detection of harmful tweets
presents still more challenges, given the colloquial, short, and
“noisy” nature of tweets [65]; the lack of background knowledge
and context in ML systems — something that is acceptable in one
context may be wholly inappropriate in another [25, 50]; and dif-
ferences in cultural contexts that cannot be standardised [9].
2.1.2 Existing Approaches While social media content can take
many multimedia forms, text posts remain prevalent, and are there-
fore our focus. Consistent with much literature in the space, our
research focuses on Twitter, though our findings may be relevant
to other text-oriented online platforms. State-of-the-art harmful
content detection systems consist of neural networks which train
on deep text features, but networks that train on surface-level (word
and character) features have also been shown to perform well
[2, 34, 50]. Such systems often embed word and character n-grams
(contiguous sequences of𝑛 items) using either bag-of-words or term
frequency-inverse document frequency (TFIDF), which normalises
counts according to the frequency of the n-gram in question in the
whole corpus [22, 50]. Trained on labeled harmful content corpora,
these systems classify unseen text as problematic or benign.

2.2 Bias in Harmful Content Detection
ML systems for detection of harmful content, like many other

ML systems, are prone to various types of bias [14, 17, 42, 48, 64].
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Figure 1: The ML pipeline, indicating forms of bias. Pre-
processing bias mitigation intervenes in region A, in-
processing in region B, and post-processing in region C.

Research has uncovered racial dialect bias in harmful tweet de-
tection datasets and systems [14, 48]: findings show correlations
between 𝑝𝐴𝐴𝐸 and harmful labels in training datasets, and that
models systematically classify tweets aligned with AAE as harmful
at higher rates than their WE-aligned counterparts.

Different forms of bias can arise at different stages in the data
processing pipeline [53]. Figure 1 shows some forms of bias that
are particularly relevant in this context. Social [20] or historical
[40] bias is driven by past decisions, actions, sentiments, norms
and laws that we may consciously recognise as outdated or inap-
propriate, but which nonetheless shape the structural conditions
of society. Social and historical biases may lead to differences in
underlying distributions of harmful content across dialects; for in-
stance, research has shown a correlation between profanity use
on Twitter and the prevalence of AAE in a geographical region
[7]. Data collection can produce sampling [40] or selection [52] bi-
ases, when non-random sampling or data cleaning lead to data that
are not representative of real-world distributions. Sampling bias
could lead to correlations between harmful class labels and AAE in
datasets, which might not exist in random samples. At the point
of annotation, label bias [52] may arise if annotators label tweets
differently according to dialect, based on either human prejudice
or cultural differences. Finally, bias can be propagated into models
and even exacerbated at the stage of model training, a phenomenon
called over-amplification [52] or algorithmic bias [40]. Deployment
bias [53] arises when systems are used, or their outputs interpreted,
in inappropriate ways; however, this occurs after predictions are
made and is therefore beyond the scope of this paper.

2.3 Automated Bias Mitigation
Automated bias mitigation is an increasingly popular subject

of ML and natural language processing (NLP) research [40, 52]. It
intervenes at one of three phases: pre-processing bias mitigation
changes the input data, in-processing bias mitigation changes the
model itself, and post-processing bias mitigation changes model
outputs [13]. These distinctions are shown in Figure 1. Given input
𝑋 and class labels 𝑌 , these approaches aim to make predictions
𝑌 = 𝑓 (𝑋 ) fair with respect to a protected attribute 𝑆 .
2.3.1 Defining Fairness Many different mathematical notions of
algorithmic fairness exist [57]. In keeping with existing research
in this field [6, 14, 48], we consider group fairness, which dictates
similar treatment across demographic lines. Individual fairness —
which dictates similar treatment for similar individuals — could
potentially be assessed in this context. Though defining “similarity”

here is challenging, it may be possible using synthetic datasets
[17, 42] or appropriate NLP-specific metrics [18]. Consistent with
the existing literature, we consider group fairness, acknowledging
that exploring individual fairness may be an area for future work.

Demographic parity [57] (parity) requires independence between
predictions𝑌 and the protected attribute 𝑆 — in this case that means
predictions made by harm detection systems are independent of
𝑝𝐴𝐴𝐸 . Alternatively, it may be beneficial to account for base rates.
Equal odds [26] requires independence of 𝑌 and 𝑆 conditional on
ground truth labels 𝑌 — in this case it requires that each label’s
false positive and false negative rates are independent of 𝑝𝐴𝐴𝐸 . This
independence ensures both that benign AAE-aligned tweets are not
moderated disproportionately frequently, and that harmful tweets
with low AAE alignment are not overlooked disproportionately
frequently. We evaluate systems using both parity and equal odds,
as it is important to (respectively) consider predictions both in
isolation and as they relate to real-world outcomes.
2.3.2 Existing Bias Mitigation Approaches NLP-specific bias miti-
gation approaches tend to intervene at the pre-processing phase.
Examples include debiased word embeddings [8] and counterfactual
data augmentation [68], both of which have been explored in the
context of gender bias. More general pre-processing approaches aim
either to modify the training dataset via massaging [31], reweighing
[31, 52], or resampling [31, 35, 35, 52]; or to create intermediate
representations of training data on which models then train [36, 66].
These approaches generally assume a binary protected attribute,
but most can be adapted for a continuous one such as 𝑝𝐴𝐴𝐸 .

Some in-processing approaches use a regularisation term to di-
rectly penalise any dependence bewteen 𝑆 and𝑌 within the model’s
training loss function [32, 38]. Others use adversarial learning, in
which an adversary network is trained to predict 𝑆 based on 𝑌 ,
thereby coaxing the predictor network to make predictions that are
independent of 𝑌 [4, 24, 59, 67]. Regularisation has been adapted to
be compatible with continuous 𝑌 and 𝑆 [38], and adversarial debi-
asing is theoretically shown to be as well [67]; however, we are not
aware of any continuous-𝑆 applications of adversarial debiasing.

Post-processing bias mitigation relies on the use of a holdout
validation data subset and does not require knowledge of the map-
ping between input data and predictions [13, 40]. This makes it an
appealing choice for third parties or when classification occurs in
a “black box.” However, without access to input data or predictive
models, post-processing approaches can only reassign some pre-
dictions according to a function [40]. We focus on strategies for
mitigating bias when the data and learning process can be accessed
and modified (i.e. pre-processing and in-processing methods) be-
cause these interventions aim to ameliorate the problem of model
bias itself, rather than its symptoms.

3 RESEARCH DESIGN
3.1 Datasets

We consider four labeled harmful tweet datasets: Founta et
al. [21], Davidson et al. [15], Waseem & Hovy [62], and Golbeck et
al. [23]. These (along with a dataset produced by Waseem [60] that
we deemed too small for reliable classification and bias evaluation
in our study) comprise a prominent set of English-language datasets
with tweets labeled by some type or types of harm [14].
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Founta et al. boost the prevalence of harmful tweets by combining
randomly sampled tweets with a sample of tweets that are likely to
belong to harmful classes based on text analysis and results of earlier
labelling rounds. Each of the other three datasets filters tweets based
on the presence of words from a hate speech lexicon [15], words
relating to religious or ethnic minorities [62], or a curated list of
terms that correlate with harassment in an exploratory search [23].

Founta et al. define “hateful” as language that is hateful toward
an individual or group; “abuse” as an insult, debasement, or violent
targeted interaction; “spam” as unwanted information, and every-
thing else “normal”. Waseem & Hovy’s definitions of “sexism” and
“racism” are straightforward, and Golbeck et al. define “harassment”
as anything that is extremely violent or offensive, threatening, hate-
ful toward a group, or designed to upset an individual or group.

Davidson et al. define “hate speech” as targeting a specific group,
“offensive language” as all other tweets that are perceived as offen-
sive, and “neither” as everything else. It is not immediately clear
whether the “offensive language” class should be considered harm-
ful or not. However, in keeping with prior research [48] we consider
it harmful for two reasons: First, the dataset’s creators note that
human annotators tend to consider sexist language to be offensive
rather than hateful [15], but targeted sexism is clearly harmful [61]
and violates Twitter’s rules [55] concerning abuse. Second, we find
that many tweets labeled as merely offensive contain language that
can be considered as unequivocally hateful — slurs such as ‘n*gger’
and ‘f*ggot’ — which we feel ought to be considered harmful.

Importantly, the datasets use different annotation methods. Founta
et al. and Davidson et al. crowdsource amateurs to undertake anno-
tation (five and at least three annotators per tweet, respectively),
whereas Waseem & Hovy and Golbeck et al. annotate the data
themselves. Waseem & Hovy’s annotations are reviewed by an out-
side gender studies expert, and Golbeck et al. underwent extensive
training prior to annotating their data. Such differences in sampling
and annotation methods, which result in different dataset sizes
and class distributions, impact downstream classifiers [58] and can
differentially give rise to some of the biases outlined in §2.2.

For Davidson et al.’s dataset, in line with its creators [15] we
only consider the tweets for which a majority of annotators (at
least half) agree on a label. We also gathered results for the subset
of Davidson et al. for which there was full agreement among anno-
tators; however, the results were very similar to the majority data,
so for the sake of brevity they are excluded. The four datasets are
used to train models with a label-stratified 80/20 train/test split.

Dataset bias gives an important standard against which to mea-
sure propagated bias. Previous research [48] measures dataset bias
using the Pearson-𝑟 correlation between each label and 𝑝𝐴𝐴𝐸 , which
we call 𝑟𝑙𝑎𝑏𝑒𝑙 . It is also useful to consider the mean value of 𝑝𝐴𝐴𝐸
among all tweets in a certain class; this is more resilient to uneven
class sizes but less so to the size and location of the overall distri-
bution. Table 1 shows our calculations of the bias present in the
full datasets (training and test sets combined) in terms of per-label
𝑝𝐴𝐴𝐸,𝑎𝑣𝑔 and 𝑟𝑙𝑎𝑏𝑒𝑙 . Harmful labels tend to have higher 𝑝𝐴𝐴𝐸,𝑎𝑣𝑔
and positive 𝑟𝑙𝑎𝑏𝑒𝑙 , whereas non-harmful labels tend to have lower
𝑝𝐴𝐴𝐸,𝑎𝑣𝑔 and negative 𝑟𝑙𝑎𝑏𝑒𝑙 . This suggests the presence of bias in
the sense that there is a positive relationship in the data between

Dataset Label Count pAAE,a�� rlabel
Founta et al. normal 37,628 0.148 �0.198

spam 8,232 0.157 �0.017
abusive* 4,950 0.246 0.26
hateful* 1,993 0.217 0.106

Davidson et al. o�ensive- language* 19,097 0.442 0.393
neither 4,119 0.214 �0.386

hate speech* 1,410 0.322 �0.086
Waseem & Hovy none 10,983 0.168 �0.045

sexism* 3,359 0.194 0.135
racism* 1,974 0.147 �0.103

Golbeck et al. normal 14,669 0.156 �0.056
harassment* 5,182 0.168 0.056

4

Table 1: Dataset bias, measured by per-label mean 𝑝𝐴𝐴𝐸
and the Pearson-𝑟 correlation between each label and 𝑝𝐴𝐴𝐸
(𝑟𝑙𝑎𝑏𝑒𝑙 ). * denotes harmful labels.

AAE alignment and harmful labels.1 Dialect bias exists in all of
the datasets, but it is far more extreme in the datasets produced by
Founta et al. and Davidson et al. This may be due in part to their
use of amateur annotation, but is likely also related to the means
by which they collect and preprocess their data.

We use two additional datasets to evaluate bias in model pre-
dictions extrinsically. Blodgett et al. [6] contains nearly 60 million
tweets labeled by 𝑝𝐴𝐴𝐸 and 𝑝𝑊𝐸 estimations. Preoţiuc-Pietro and
Unger [46] contains nearly 6 million tweets labeled by the self-
reported race of the author. Because these datasets are not labeled
according to harm, we do not evaluate them for bias.

3.2 Bias Evaluation Metrics
3.2.1 Intrinsic Bias Metrics We measure bias intrinsically by ex-
amining the relationship between dialect and predictions made
on held-out testing subsets of our training datasets. Because we
consider 𝑝𝐴𝐴𝐸 as continuous, we cannot easily split tweets into
privileged and unprivileged groups, a prerequisite for most bias
metrics. We therefore define four new metrics. The first is

Δ𝑝𝐴𝐴𝐸 ≡ 𝑝𝐴𝐴𝐸ℎ − 𝑝𝐴𝐴𝐸𝑛

where 𝑝𝐴𝐴𝐸ℎ and 𝑝𝐴𝐴𝐸𝑛 are the average values of 𝑝𝐴𝐴𝐸,𝑎𝑣𝑔 across
all harmful and non-harmful labels, respectively. Lower Δ𝑝𝐴𝐴𝐸
means that predictions made by a system are more fair according
to demographic parity because there is a smaller difference in the
dialect alignment of tweets labeled as harmful versus non-harmful.

The other three metrics consider the Pearson-𝑟 correlation be-
tween 𝑝𝐴𝐴𝐸 and predicted labels. This technique is used to measure
racial dialect bias in datasets [48], and other types of correlation
are used to measure unfairness in other settings with continuous
protected attributes [38]. For each label, we measure the overall
correlation 𝑟 , the correlation 𝑟𝑇 for subsets of tweets that carry that
label in the dataset, and the correlation 𝑟𝐹 for subsets of tweets that
do not carry that label. That is, for a given label ℓ ,

𝑟𝑇 ≡ 𝑟 (𝑝𝐴𝐴𝐸 (𝑋 ), 𝑔(𝑌 )) among tweets with 𝑌 = ℓ

𝑟𝐹 ≡ 𝑟 (𝑝𝐴𝐴𝐸 (𝑋 ), 𝑔(𝑌 )) among tweets with 𝑌 ≠ ℓ

where 𝑔(𝑌 ) = 1 if 𝑌 = ℓ and 𝑔(𝑌 ) = 0 if 𝑌 ≠ ℓ .

1In keeping with existing research, we assume a priori that the average tweet is not
inherently more or less toxic in a particular dialect [48].
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We define three bias metrics derived from these correlations:
Δ𝑟 ≡ 𝑟ℎ − 𝑟𝑛

Δ𝑟𝑇 ≡ 𝑟𝑇,ℎ − 𝑟𝑇,𝑛

Δ𝑟𝐹 ≡ 𝑟𝐹,ℎ − 𝑟𝐹,𝑛

where 𝑟ℎ and 𝑟𝑛 are the average values of 𝑟 across all harmful and
non-harmful tweets, respectively, and this convention is extended
to 𝑟𝑇,ℎ , 𝑟𝑇,𝑛 , 𝑟𝐹,ℎ , and 𝑟𝐹,𝑛 .

Like Δ𝑝𝐴𝐴𝐸 , Δ𝑟 measures violations of parity as unconditional
dependencies between 𝑝𝐴𝐴𝐸 and label predictions. By conditioning
on a given true label, Δ𝑟𝑇 provides information on false negative
classifications for that label, and by conditioning on the absence
of a given true label, Δ𝑟𝐹 provides information on false positive
classifications. Therefore, Δ𝑟𝑇 and Δ𝑟𝐹 together tell us to what
extent equal odds is upheld.

Across all four intrinsic bias evaluation metrics, positive values
indicate bias against AAE, negative values indicate bias in favour
of AAE, and values of zero indicate no bias.

3.2.2 Extrinsic Bias Metrics We measure bias extrinsically by exam-
ining patterns in predictions made on tweets in external datasets
that are labeled either by dialect alignment or self-reported author
race. Because Blodgett et al.’s dataset [6] is sufficiently large, we
define groups based on dialect alignment in keeping with existing
research: AAE-aligned if 𝑝𝐴𝐴𝐸 > 0.8 and WE-aligned if 𝑝𝑊𝐸 > 0.8.
In Preoţiuc-Pietro and Unger’s dataset [46], tweets are naturally
grouped by the self-reported race of their authors.

For predictions made on [6] we define the following metrics:
ΔℎAAE,WE ≡ 𝑝 (𝑦 is harmful|AAE) − 𝑝 (𝑦 is harmful|WE)
ΔℎAAE,AD ≡ 𝑝 (𝑦 is harmful|AAE) − 𝑝 (𝑦 is harmful)

ΔℎAAE,WE measures the gap in proportion of harmful label predic-
tions between AAE- and WE-aligned tweets, and ΔℎAAE,AD mea-
sures the gap in proportion of harmful label predictions between
AAE-aligned tweets and all tweets (AD for “all dialects”).

For predictions made on [46] we define the following metrics:
Δℎblack,white ≡ 𝑝 (𝑦 is harmful|black) − 𝑝 (𝑦 is harmful|white)

Δℎblack,all ≡ 𝑝 (𝑦 is harmful|black) − 𝑝 (𝑦 is harmful)
These measure equivalent “gaps” in predicted harmful porportion
across self-reported author race groups.

All four extrinsic evaluation metrics measure violations of parity
fairness: positive values against AAE and negative values in its
favour. Neither external dataset labels the tweets by type of harm, so
we cannot compare predictions to real-world outcomes; therefore,
we cannot evaluate equal odds fairness extrinsically.

3.3 Baseline Classifier
As a baseline model, we train a convolutional neural network

(CNN) with two hidden layers, based on the observation that CNN
are well-suited to this task [34] and because they are easily compat-
ible with adversarial debiasing [59]. Hyperparameters were chosen
to optimise performance within the bounds of reasonable training
times, based on five-fold stratified cross-validation on Founta et al.’s
dataset. This dataset was chosen because it contains four somewhat
vague and overlapping labels but is large enough to train reason-
ably accurate models. We experimented with tweet embedding via

Dataset Precision Recall F1 F1 (BK)
Founta et al. 0.74 0.76 0.75 0.81 [34]

Davidson et al. 0.87 0.87 0.87 0.91 [37]
Waseem & Hovy 0.81 0.81 0.81 0.93 [44]

Golbeck et al. 0.69 0.71 0.69 0.67 [14]
Table 2: Baseline weighted average performance per dataset

Dataset Label Precision Recall F1 F1 (BK)
F abusive 0.74 0.69 0.71 0.89 [34]
F hateful 0.35 0.18 0.24 0.31 [34]

D offensive-
language 0.92 0.93 0.93 -

D hate speech 0.35 0.26 0.30 -
W&H sexism 0.72 0.67 0.70 1.00 [44]
W&H racism 0.71 0.69 0.70 0.71 [44]

G harassment 0.43 0.33 0.37 -
Table 3: Performance for the harmful label(s) in each dataset.
Per-label BK performance is not available for all datasets.

bag-of-words vectors [2] and TFIDF, using both character and word
features. Ultimately, TFIDF embeddings of 10,000 character 1-, 2-,
and 3-grams were chosen. The network trains for 50 epochs using
batches of 64 tweets. It uses an Adam optimiser with a decaying
learning rate initially set to 0.001. The number of units per hidden
layer is calculated based on an analysis by Huang et al. [29].

Table 2 shows weighted average precision, recall, and f1-score
for the baseline model, evaluated in-domain on held-out test sets.
Importantly, the performance is close to, though not quite as good as,
the best known (BK) performance that we could find in the literature
for each dataset [14, 34, 37, 44]. The classifier is reasonably able
to identify harmful content in most datasets; however, like even
the most discerning human annotators, it struggles to differentiate
between different types of harm, and like the BK models it also
performs poorly in classification of some specific harmful labels (as
Table 3 shows). Recall tends to be lower than precision for harmful
labels, which suggests that the baseline system under-classifies
content as harmful. A weakness of weighted average f1-score as
a measure of system performance is that systems can have high
weighted average f1-scores while performing poorly on harmful
labels as a result of the relatively low prevalence of harmful labels
in all datasets except that of Davidson et al. It is nonetheless a useful
way to quantify a system’s performance across labels.

3.4 Bias Mitigation Pre-Processing
(Preferential Sampling)

Preferential sampling [30] mitigates dataset bias by resampling
datapoints with high classification uncertainty: it duplicates anti-
stereotypical points and drops pro-stereotypical ones. This changes
the dataset distribution to reduce discrimination while preserving
much of the information for training. It has been shown to effec-
tively reduce bias while maintaining reasonably high performance
in classification settings with binary 𝑌 and 𝑆 , and is less intrusive
than similarly effective dataset bias mitigation techniques [30, 31].

Harmful tweet datasets often contain more class labels than
simply harmful and not harmful, and differences between different
types of harmful label can be important. We are tasked, then, with
a multi-class classification problem. In the context of multi-class
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𝑌 and continuous 𝑆 , a preferential sampling implementation must
differ from the original algorithm [31] in three ways:

(1) The measure of uncertainty should be compatible with mul-
tiple classes.

(2) Because resampling data with more extreme (high or low)
𝑝𝐴𝐴𝐸 is likely to have a greater impact, 𝑝𝐴𝐴𝐸 should be a
factor in considering which data objects to duplicate or drop.

(3) For the same reason, we cannot pre-calculate an optimal
number of datapoints to duplicate or drop.

The first point is addressed by defining a measure of predic-
tive uncertainty similar to margin sampling [49]. We argue that
generally speaking, misclassifications of harmful tweets as non-
harmful and vice versa are more consequential than misclassifica-
tions within either harmful or non-harmful label sets: classifying
harmful tweets as non-harmful allows harm to go undetected and
unmoderated, and classifying non-harmful tweets as harmful may
stifle benign sentiments of a population or individual. Therefore,
the margin of confidence𝑚(𝑥) is defined as the margin between the
highest predicted label probability and the highest predicted proba-
bility of a label of the opposite harm value, where predictions are
made using a basic logistic regression classifier. This encourages the
system to resample tweets that are most likely to be misclassified
as harmful when they are not, and vice versa.

The second point is addressed by adding a term to a data object’s
resampling candidacy 𝐶 (𝑥) that encapsulates the extremity of its
AAE alignment. We use |𝑎(𝑥) |, the absolute value of a tweet’s
normalised 𝑝𝐴𝐴𝐸 rank: 𝑎(𝑥) = −1 for the tweet with lowest 𝑝𝐴𝐴𝐸 ,
𝑎(𝑥) = 1 for the tweet with highest 𝑝𝐴𝐴𝐸 , and 𝑎(𝑥) = 0 for the
median. Overall, then, a tweet’s resampling candidacy is defined as

𝐶 (𝑥) ≡ |𝑎(𝑥) | −𝑤𝑝𝑚(𝑥)
where 𝑤𝑝 is a hyperparameter. As a result, tweets are the strongest
candidates for resampling when they both have extreme 𝑝𝐴𝐴𝐸 and
lead to a low margin of confidence between a harmful and non-
harmful label prediction.

The third constraint is addressed by performing resampling iter-
atively. Rather than pre-calculating an ideal number of duplications
and deletions, we resample 𝑁 data objects at a time until bias 𝐵
is reduced to below a theshold 𝑇 . We define 𝐵 as the average of
either |𝑟 | if fairness is defined as demographic parity, or |𝑟𝑇 |+ |𝑟𝐹 |

2 if
fairness is defined as equality of odds, across all labels in the dataset.
This penalises any bias, even if the bias favours AAE alignment.
Importantly, different fairness definitions impact the algorithm only
to the extent that they differently determine when the threshold for
termination is reached — the resampling process itself is the same.

Because there is a limit to bias that can be removed by resampling
data objects this way, 𝐵 eventually begins to increase if 𝑇 is set
too low. As a result, the algorithm terminates if at any point 𝐵 is
greater than or equal to its value from the previous iteration.

In this implementation, 𝑤𝑝 and 𝑇 are tunable hyperparameters.
Intuitively, 𝑤𝑝 sets the importance of predictive uncertainty rela-
tive to extremity of 𝑝𝐴𝐴𝐸 in determining a tweet’s candidacy for
resampling; it is a hyperparameter because the relative importance
of these factors is not immediately obvious. 𝑇 determines to what
extent the data are resampled: how much bias should be reduced.
A standardised batch size 𝑁 = 1, 000 is used.

For each dataset and each definition of fairness, we train models
using all combinations of the following hyperparameter values:

𝑤𝑝 ∈ {0.1, 0.32, 1, 3.2, 10}, 𝑇 ∈ {0.05, 0.1, 0.15, 0.2}
We choose values that lead to the lowest prediction bias 𝐵 — defined
according to the fairness definition used for resampling — without
reducing weighted average f1-score by more than 5% of baseline.

We find that the values of 𝑤𝑝 and 𝑇 impact classification per-
formance and propagated bias, but they do not do so consistently
across datasets. Each value of𝑤𝑝 is best for at least one dataset and
fairness definition, as are all values of 𝑇 except 0.2, which may be
too high a threshold to force substantial resampling.

3.5 Bias Mitigation In-Processing (Adversarial
Debiasing)

Adversarial debiasing [67] unintrusively attempts to remove any
bias, whether against or in favour of any demographic group. In-
processing bias mitigation by regularisation has been adapted to
the case of a continuous protected attribute [38], but adversarial
debiasing appears not yet to have been explored in this case.

We adapt the adversarial debiasing code developed by IBM [3]
to be compatible with multi-class classification,2 and add a hidden
layer of size 100 to the adversary network in keeping with [59].

According to the original implementation [67], the predictor
network updates its prediction weights𝑊 according to

∇𝑊 𝐿𝑃 − proj∇𝑊 𝐿𝐴
∇𝑊 𝐿𝑃 − 𝛼∇𝑊 𝐿𝐴

where 𝐿𝑃 is its loss, 𝐿𝐴 is the adversary network’s loss, and 𝛼 is a
tunable hyperparameter. The magnitude of 𝛼 determines the adver-
sary’s strength in debiasing classifications made by the predictor,
presumably at the expense of higher 𝐿𝑃 .

In order to enforce demographic parity the adversary network
receives as input only the predictions 𝑌 during training. For equal
odds enforcement the adversary receives both 𝑌 and true labels 𝑌 .

For each dataset, a model with adversarial debiasing was trained
using each fairness definition, and with the following values of 𝛼 :

𝛼 ∈ {0.1, 0.32, 1, 3.2, 10, 32, 100}
We use the same criteria as with 𝑤𝑝 and 𝑇 to choose 𝛼 in each
case. Generally, higher values of 𝛼 lead to greater bias reduction:
all chosen values are either 10, 32, or 100.

Finally, we combine preferential sampling and adversarial debi-
asing by training models using adversarial debiasing on resampled
data. To select hyperparameter values𝑤𝑝 ,𝑇 , and 𝛼 for these models,
we explore all combinations of the three best sets of 𝑤𝑝 and 𝑇 and
the three best values of 𝛼 . It is rarely the case that the best values for
both preferential sampling and adversarial debiasing alone are also
best when the two are combined, and we find substantial variation
in which values are most effective between datasets.

4 EXPERIMENTAL RESULTS
Using each bias mitigation approach independently and com-

bined, and using both parity and equal odds definitions of fairness,
we train seven types of models, using the following notation:

• B — baseline model
• Pr (p) — preferential sampling, parity fairness

2Our code is available at https://github.com/arb7/adv-deb-multi.
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• Pr (e) — preferential sampling, equal odds fairness
• Adv (p) — adversarial debiasing, parity
• Adv (e) — adversarial debiasing, equal odds
• Pr+Adv (p) — both preferential sampling and adversarial

debiasing, parity
• Pr+Adv (e) — both preferential sampling and adversarial

debiasing, equal odds
For each model type and training dataset, five individual models
were trained. All reported results in this section represent averages
across these sets of five models, as this smooths the variation due
to random variable initialisation in the neural network. That said,
we find variation is generally low between models. We evaluate
models based on their performance in-domain and cross-domain,
and on the bias they propagate measured intrinsically and extrinsi-
cally. Performance and intrinsic bias evaluations were performed
using a single University of Cambridge Computer Lab GPU ma-
chine, and the extrinsic using the University of Cambridge Research
Computing Services Wilkes2 GPU cluster.3

4.1 In-Domain Classification
Table 4 shows the weighted average f1-score of each model,

evaluated in-domain on the held-out test subset of the dataset on
which it was trained. Bias-mitigated models tend to perform nearly
as well in-domain as baseline for Founta et al. and Davidson et
al.’s datasets. On these datasets, we see that adversarial debiasing
yields slightly higher classification performance than preferential
sampling or a combination of approaches. Bias-mitigated f1-score
is roughly equal to baseline for Waseem & Hovy and Golbeck et
al.’s less biased datasets.

F D W&H G
B 0.75 0.87 0.81 0.69

Pr (p) 0.73 0.83 0.81 0.69
Pr (e) 0.74 0.86 0.81 0.69

Adv (p) 0.74 0.86 0.81 0.70
Adv (e) 0.75 0.86 0.81 0.69

Pr+Adv (p) 0.73 0.84 0.81 0.70
Pr+Adv (e) 0.73 0.85 0.81 0.69

Table 4: Weighted average f1-score for baseline and bias mit-
igated models, evaluated in-domain. The highest score for
each dataset appears in bold.

4.2 Cross-Domain Classification
One measure of a system’s generalisability is its cross-domain

classification performance [64]. In this case, it is impossible to per-
form multi-class classification because each dataset uses different
labels. Therefore, in keeping with previous research [64] we restrict
cross-domain classification to a binary task between harmful and
non-harmful tweets as defined in Table 1.

For each model, we predict labels for the entire (training plus test
subsets) datasets on which the model was not trained. We calculate
weighted average f1-score across harmful and non-harmful labels.
Because each model can be evaluated on each of the three datasets
on which it was not trained, twelve dataset permutations exist in
total. As before, the reported f1-score for each dataset permutation
represents an average over five models. Figure 2 shows these results
(full tabular data appear in the Appendix, §A.2).
3See https://www.hpc.cam.ac.uk/systems/wilkes-2 for technical specifications.

Founta et al. Davidson et al. Waseem & Hovy Golbeck et al.

Testing Dataset

0.3

0.4

0.5

0.6

0.7

0.8

W
ei

gh
te

d
A

ve
ra

ge
F

1-
S

co
re

Trained on Founta et al.

Trained on Davidson et al.

Trained on Waseem & Hovy

Trained on Golbeck et al.

−0.2

0.0

0.2

0.4

Founta et al.

B

Pr (p)

Pr (e)

Adv (p)

Adv (e)

Pr+Adv (p)

Pr+Adv (e)

Founta et al. Davidson et al. Waseem & Hovy Golbeck et al.

Testing Dataset

0.3

0.4

0.5

0.6

0.7

0.8

W
ei

gh
te

d
A

ve
ra

ge
F

1-
S

co
re

Trained on Founta et al.

Trained on Davidson et al.

Trained on Waseem & Hovy

Trained on Golbeck et al.

Figure 2: Weighted average f1-score organised by testing
dataset. Marker shape indicates training dataset, and colour
indicates bias mitigation approach. Dashed lines indicate
baseline in-domain f1-score for each (testing) dataset.

4.2.1 Performance Suffers Cross-Domain In line with previous find-
ings [64], models perform worse cross-domain than in-domain.
This suggests that dataset bias — including but not restricted to
dialect bias or other discriminatory biases — may cause harmful
tweet detection systems to perform worse in the real world than in
their development contexts.

4.2.2 Differences Between Datasets As Figure 2 shows, models
trained on Founta et al.’s data perform best when evaluated on other
datasets, followed closely by Waseem & Hovy, then Golbeck et al.,
and then Davidson et al. Given that the best and worst performing
datasets are both the largest and the most biased against AAE (per
Table 1), we observe that neither dataset size nor dataset bias relates
clearly to cross-domain classification performance.

We observe that the baseline models often perform better than
bias-mitigated models; however, these performance differences are
not very consistent. At least one bias-mitigated model performs
at least as well as baseline in a majority of dataset permutations,
including all six permutations that train on Waseem & Hovy or
Golbeck et al.’s datasets. Generally, adversarial debiasing yields
higher cross-domain performance than preferential sampling or a
combination of the two, but training on Waseem & Hovy’s dataset
provides a notable exception. Similarly, equal odds generally yields
higher performance than parity, but this result is also inconsistent.

The level of dialect bias present in a dataset appears to impact the
extent to which bias mitigation affects cross-domain performance.
The variance in f1-score, and the decrease in performance when
bias mitigation is applied, are greatest when the two more biased
datasets, produced by Founta et al. and Davidson et al., are used
for both training and testing. The most consistent f1-scores occur
when the less biased datasets, produced by Waseem & Hovy and
Golbeck et al., are used for both training and testing. Combinations
of the two fall in the middle, though classification performance
on Founta et al.’s data is preserved through bias mitigation when
models are trained on one of the less biased datasets. This again
underscores the importance of the data collection and annotation.

4.3 Intrinsic Bias Evaluation
Figure 3 compares bias metrics for predictions made by models

in-domain on each dataset. Each graph represents a dataset. Within
each graph, the two left bar groups show Δ𝑝𝐴𝐴𝐸 and Δ𝑟 , which
measure violations of demographic parity. The two right bar groups
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Figure 3: Intrinsic bias results from in-domain classification.
From left to right: Δ𝑝𝐴𝐴𝐸 , Δ𝑟 , Δ𝑟𝑇 , and Δ𝑟𝐹 .

show Δ𝑟𝑇 and Δ𝑟𝐹 , which measure violations of equal odds. As
described in §3.2, higher bars indicate higher bias against AAE.

For each dataset there exists some bias mitigation approach that
substantially reduces bias against AAE at a small or nonexistent
performance cost. However, the reduction in bias is not perfect.
4.3.1 Differences Between Datasets In most cases, we observe that
preferential sampling decreases bias, particularly Δ𝑝𝐴𝐴𝐸 and Δ𝑟 ,
to a greater extent than adversarial debiasing. That said, no single
approach is consistently best for reducing all types of bias while
maintaining high performance, and the success of different ap-
proaches varies across datasets. For instance, on Davidson et al.
and Waseem and Hovy’s data, preferential sampling with fairness
defined by parity creates negative Δ𝑟𝑇 with a higher magnitude
than baseline, which suggests a greater violation of equal odds,
but with misclassifications favouring AAE: tweets with high 𝑝𝐴𝐴𝐸
are more likely to be misclassified as benign and less likely to be
misclassified as harmful. For these datasets, adversarial debiasing
with a parity definition of fairness reasonably reduces bias without
reversing it. Yet on Founta et al. and Golbeck et al.’s data, prefer-
ential sampling leads to less bias of all types, and in the case of
Golbeck et al. adversarial debiasing exacerbates bias above baseline.

These differences indicate variation in the types and nature of
bias present. For example, each dataset uses a different sampling
method (before and distinct from our resampling) to increase the
prevalence of harmful content. Sampling biases arising from these
different methods may be differentially amenable to “correction”
by resampling. Meanwhile, adversarial debiasing targets propa-
gated algorithmic bias. Because social, label, and sampling biases
each affect bias propagation differently, and because they are each

present to different extents in these datasets, it seems natural that
the impact of adversarial debiasing is varied.
4.3.2 Tension Between Fairness Types Across datasets, those bias
mitigation approaches that best improve demographic parity fair-
ness occasionally do so at the expense of equal odds. This phenom-
enon appears strongest when preferential sampling is employed,
whether in combination with adversarial debiasing or not. On all
datasets except Golbeck et al., training models on resampled data
using a parity definition of fairness produces negative values for
Δ𝑟𝑇 , Δ𝑟𝐹 , or both. This is, unsurprisingly, usually accompanied by
the largest decreases in predictive performance.

In fact, Figure 3 does not even tell the whole story: in some cases
where Δ𝑟𝑇 and Δ𝑟𝐹 are small, individual harmful labels have high-
magnitude negative correlations with 𝑝𝐴𝐴𝐸 . This indicates bias in
favour of AAE for those labels, but can also hide substantial bias
against AAE for other labels in secondary bias metrics. An advan-
tage of adversarial debiasing over preferential sampling is that the
tradeoff between parity and equal odds fairness is less pronounced,
making it easier to better balance the two. This makes sense given
the mechanisms by which the two approaches work: preferential
sampling seeks always to advantage AAE-aligned tweets in its du-
plications and removals, whereas adversarial debiasing works to
minimise any relationship between 𝑝𝐴𝐴𝐸 and predictions.

It is important for those who implement and deploy harmful
content detection systems to consider the extent to which they wish
to enforce different types of fairness. In some cases the solution
might be straightforward. For example, preferential sampling of
Golbeck et al.’s dataset enforces both parity and equal odds in
models: each of Δ𝑝𝐴𝐴𝐸 , Δ𝑟 , Δ𝑟𝑇 , and Δ𝑟𝐹 is nearly zero. However,
the data show that generally, some degree of either parity or equal
odds fairness must be sacrificed in order to optimise the other. This
is consistent with the observation [33] that parity and equal odds
are incompatible given different base rates. That is, if 𝑆 is dependent
of 𝑌 , it is impossible for 𝑌 to be both unconditionally independent
of 𝑆 and conditionally independent of 𝑆 given 𝑌 . In all but very
equal datasets, differences in base rates may make it impossible to
enforce a satisfactory degree of both parity and equal odds.
4.4 Extrinsic Bias Evaluation

Figure 4 compares bias metrics for predictions made by models
on external datasets labeled by either dialect alignment [6] or self-
reported author race [46]. Each graph represents a training dataset.
Within each graph, the two left bar groups show ΔℎAAE,WE and
ΔℎAAE,AD , which measure gaps in the proportions of tweets pre-
dicted to be harmful along dialect lines. The two right bar groups
show Δℎblack,white and Δℎblack,all , which measure gaps in the pro-
portions of tweets predicted to be harmful along racial lines. Recall
that all of these metrics measure bias only as violations of parity
because tweets in the external datasets are not labeled according
to harm. Once again, higher bars indicate higher bias against AAE.

As with intrinsic bias, for each dataset there is some form of bias
mitigation that appears capable of reducing extrinsic bias somewhat.
In some cases, there is tension between the ability of bias mitigation
approaches to promote equality along dialect lines versus along
author race lines, but this is not a consistent trend.
4.4.1 Differences Between Datasets Consistent with the intrinsic
evaluation, Figure 4 shows that not only are the baseline bias levels
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Figure 4: Extrinsic bias evaluation results. From left to right:
ΔℎAAE,WE , ΔℎAAE,AD , Δℎblack,white , and Δℎblack,all .

different across datasets, but also that bias mitigation has different
effects in different contexts. Individual approaches substantially
reduce bias for some datasets, but are ineffective or create addi-
tional biases for other datasets. For instance, using a combination
of preferential sampling and adversarial debiasing effectively re-
duces bias against both AAE-aligned tweets and tweets written by
Black authors in the datasets produced by Founta et al., Waseem
& Hovy, and Golbeck et al. However, while this approach reduces
bias against tweets written by Black authors to near zero in the two
Davidson et al. datasets, it creates substantial negative ΔℎAAE,WE
and ΔℎAAE,AD , which suggests new imbalance in favour of AAE.
Once again, no one approach is consistently superior.

This contextual dependence suggests that the link between ex-
perimental results and real-world behaviour may be more tenuous
than one would hope: context clearly matters, but its impact is
a much more complex problem. So while there is reason to be
optimistic that bias mitigation strategies can reduce differential
moderation of online content, we must aim to better understand
these relationships before and as we deploy such technologies.

5 DISCUSSION
Our results indicate that both preferential sampling and adver-

sarial debiasing can substantially reduce — though not completely
eliminate — bias against AAE in the task of harmful tweet detection,
at little to no performance cost. However, bias and performance
impacts vary between datasets in ways that are not always straight-
forward. This complex context dependence, and performance in-
consistencies in different settings, raise questions about the fairness
of automated content moderation systems and their use.

5.1 Bias Rooted in Datasets
The context dependence of bias and performance responses to

bias mitigation suggests the importance of the entire data collection,
annotation, and processing pipeline. Classification performance
may be improved by filtering and boosting training data to increase
the prevalence of harmful tweets, and by using scalable annotation
methods to allow for larger datasets. However, our results suggest
that may be at the cost of more severe dialect bias.

Rather than identifying a single best approach to mitigating bias
against AAE in datasets and models, our results further suggest
that those who implement and deploy harmful content detection
systems are best placed to undertake bias analyses. They can then
explore options for minimising dialect bias that align with their spe-
cific contexts, goals, and values (and can be held to account based
on these). Other bias mitigation techniques may be more effective
than those we implemented and are worth exploring, especially
when the bias is introduced by human labellers who may not have
a nuanced understanding of subconscious biases against AAE. For
instance, multi-task learning has been shown [56] to substantially
reduce marginalised identity bias in harmful online comment de-
tection. We also recommend that further research continue to seek
a deeper understanding of the sources and nature of racial dialect
bias in this and other NLP tasks.

Importantly, racial dialect bias is not the only form of bias that
impacts harmful content detection systems. Research [17, 42] has
exposed bias that discriminates against marginalised identity men-
tions, and other forms of bias such as topic and author bias [64]
can hurt system accuracy metrics. A deeper understanding of the
range of bias that can exist might enable more complete mitigation
of biases, including those not yet identified.

5.2 Towards “True” Fairness
5.2.1 Competing Definitions of Fairness The task of building a “fair”
harm detection model is made challenging by biased datasets and
by conflicting perspectives on how to define fairness. In this paper,
we have proposed equal odds: systems should not systematically
misclassify tweets as more harmful the more they align with AAE
and less harmful the less they do. However, bias and ambiguity in
the datasets limit our ability to calculate equal odds. In contrast
with many other domains, such as true recidivism or loan default
rates, underlying “objective truth” class labels are unknown in the
harmful tweet context for a variety of reasons including vague and
overlapping class definitions, annotation bias, and the subjectivity
of harmful content. Therefore, calculated false positive and negative
rates may themselves have issues of bias, which weakens evalua-
tions of equal odds fairness. For this reason, it may be valuable to
also consider demographic parity fairness, which enforces the same
proportion of classification as harmful across groups, even though
this may be problematic if there are true differences in distributions.

What is the most appropriate metric of fairness depends on the
context. On one hand, freedom of expression is at stake, with the
risk of disproportionately silencing an already-marginalised group.
On the other hand, there is a risk that truly harmful content could go
undetected. Efforts towards greater fairness in correctly classifying
AAE tweets should take seriously the need to prevent harmful
content from reaching too wide an audience, and any tensions
or trade-offs between these risks must be considered. Ultimately,
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our aspiration toward fairness is grounded in a belief that harmful
content detection systems, and AI and technology more generally,
should reflect, advance, and support a society to which we aspire,
even if that means a slight dissonance with society’s current state.
5.2.2 Bias-aware Use The harms averted by automated harmful
tweet detection systems, and those caused by their biases, ultimately
depend on the way they are deployed. For instance, at present
automated systems are used to screen tweets for review by human
moderators [9]. Dialect priming has been shown [48] to reduce
dialect bias at the point of dataset annotation; similarly, priming
human moderators for dialectal differences might reduce the extent
to which Black voices are silenced online. Platforms could choose
to never remove content outright based on automated predictions,
but rather to hide it behind interstitial warnings. While this would
not fully silence communities per se, it might perpetuate societal
biases by priming readers to expect harm when they encounter
AAE. It is critical that the merits and shortcomings of these systems
be evaluated and debated not in isolation, but in relation to the
ways that they are used and impact people.

5.3 Implications of Uncertainty
The often-tenuous connections between in-domain and cross-

domain performance, and between intrinsic and extrinsic bias,
demonstrate the difficulty of predicting real-world impact based on
experiments performed only in limited research and development
contexts. The bias mitigation approaches explored seem capable of
reducing bias along some axes while maintaining high in-domain
classification performance, but this cannot be guaranteed in the
complex real-world. A certain level of uncertainty inevitably ac-
companies applying systems outside of their development settings.

This uncertainty raises the question of what role such technolo-
gies — which for better or worse impact our social and political
systems worldwide — can and should play in society. It is clear
that harmful tweet detection systems are far from perfect, and that
there is no silver bullet to solve their problems. However, these
systems can serve an important role protecting people from online
abuse and hate. Further, human decisions are also afflicted by bias,
which is reflected in the label bias we observe in datasets. Should AI
systems be held to a higher standard than their human counterparts
should we choose to deploy them? Although structural issues afflict
both humans and autonomous systems, individual human bias is
just that, individual, whereas algorithmic bias can have systemic
effects by crystallising and reperpetuating the bias at-scale.

It has been argued [45] that we ought to answer important ques-
tions about the role and scope of technological interventions before
they are implemented, and that the reformist nature of bias mit-
igation research can distract from these deeper issues. However,
content classification and moderation systems are already in place.
It is important to simultaneously interrogate their role and make
them as fair as possible. In fact, as we have demonstrated, attempt-
ing to mitigate bias using technical interventions can shed light on
new facets of the problem, or at the very least reveal how incom-
plete our understanding is.

5.4 Social Media’s Political Economy
More fundamentally, there are questions of whether it is possible

to produce “fair” systems for commercial platforms in societies that

are systemically unfair. Other questions are raised by the commer-
cial nature of platforms such as Twitter. These platforms are now
the technical infrastructure on which parts of society rely, but are
also sites of power, control, and profit [10–12, 69]. Research on
improving systems that produces more effective control of social
infrastructure by platforms — by, for example, improving their mod-
eration systems — may contribute to increasing those companies’
ability to influence communications according to their commer-
cial priorities [10] while at the same time offloading some respon-
sibility for, and cost of, getting their systems right themselves.
Moreover, concerns of platformised “predatory” inclusion are also
raised, whereby greater inclusiveness ultimately works to increase
marginalised groups’ exposure to forms of control and revenue
extraction rather than addressing structural disadvantage [51]

This is not to say that such research is not important; on the
contrary, ensuring that Black people and others can access and use
social platforms without being subject to harm or discriminatory
moderation is a societal imperative. But, for platforms to be truly
inclusive of marginalised or minoritised communities, research also
needs to address the business models and structural features of
those platforms — such as their design and affordances — that can
contribute to the prevalence of hate speech in the first place.

6 CONCLUSION
In this paper we have explored mitigating racial dialect bias

in a neural network for harmful tweet detection by adapting two
approaches: preferential sampling pre-processing and adversarial
debiasing in-processing. These techniques tend to reduce system-
atic bias against AAE, measured both intrinsically and extrinsically,
while maintaining a high degree of performance for in-domain
prediction. However, we observe the extent to which bias and per-
formance are impacted by our interventions is extremely dependent
on dataset context. A cross-domain performance evaluation further
reveals the differences in the behaviour of harmful tweet detection
systems within and outside of their training contexts.

These unavoidable uncertainties raise important questions re-
garding the role of automated harmful content detection and other
AI technologies in society. There is value in attempting to mitigate
bias; however, the inconsistencies and shortcomings of our bias
mitigation strategies indicate how complex these biases can be.

This research is inherently limited in that it attempts to address a
social problem — though admittedly one that has been exacerbated
by technology — through purely technical means. Quantitative
representations of bias can illuminate and mitigate critical and
unforeseen challenges, and computational interventions can relieve
their symptoms. However, this work represents only a starting point.
We hope that our research will promote a continued conversation on
societal and personal biases, fair AI, technology’s political economy,
and the broader role and risks of technology.
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A APPENDIX
This appendix presents support for our treatment of 𝑝𝐴𝐴𝐸 as

a continuous variable, and shows full tabular data for the cross-
domain performance evaluation.

A.1 Continuous Dialect Alignment
Figure 5 shows normalised count histograms of 𝑝𝐴𝐴𝐸 distribu-

tions for tweets written by authors who self-identify as Black and
non-Black in a user-level race dataset [46]. Relative to non-Black
authors, Black authors wrote fewer tweets with low (below about
0.2) 𝑝𝐴𝐴𝐸 and more tweets with high 𝑝𝐴𝐴𝐸 . Welch’s t-test yields
𝑝 < 0.001 for these two distributions: the expected value of 𝑝𝐴𝐴𝐸 is
significantly higher for Black authors. Furthermore, the Pearson-𝑟
correlation between 𝑝𝐴𝐴𝐸 and Black authors in the dataset is posi-
tive and significant (𝑟 = 0.205, 𝑝 < 0.001). Of course, dialect does
not correspond perfectly to race; however, this supports the use
of 𝑝𝐴𝐴𝐸 as a continuous protected attribute because the difference
persists across its entire range, not only above a threshold value.
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Figure 5: Normalised 𝑝𝐴𝐴𝐸 distributions for tweets written
by authors who do and do not identify as Black.

A.2 Full Cross-Domain Performance
Evaluation Data

Testing Dataset
Train. F D W&H G
F B - 0.78 0.63 0.66

Pr (p) - 0.60 0.63 0.66
Pr (e) - 0.68 0.64 0.66
Adv (p) - 0.71 0.63 0.64
Adv (e) - 0.74 0.62 0.65
Pr+Adv (p) - 0.59 0.63 0.66
Pr+Adv (e) - 0.62 0.63 0.66

D B 0.76 - 0.56 0.45
Pr (p) 0.59 - 0.49 0.34
Pr (e) 0.66 - 0.52 0.37
Adv (p) 0.74 - 0.54 0.39
Adv (e) 0.74 - 0.55 0.43
Pr+Adv (p) 0.63 - 0.50 0.38
Pr+Adv (e) 0.67 - 0.51 0.36

W&H B 0.82 0.62 - 0.62
Pr (p) 0.81 0.51 - 0.61
Pr (e) 0.82 0.63 - 0.62
Adv (p) 0.82 0.61 - 0.61
Adv (e) 0.82 0.61 - 0.62
Pr+Adv (p) 0.81 0.53 - 0.60
Pr+Adv (e) 0.82 0.58 - 0.63

G B 0.82 0.38 0.60 -
Pr (p) 0.82 0.34 0.60 -
Pr (e) 0.81 0.32 0.61 -
Adv (p) 0.82 0.42 0.61 -
Adv (e) 0.81 0.39 0.61 -
Pr+Adv (p) 0.81 0.29 0.60 -
Pr+Adv (e) 0.81 0.33 0.61 -

3

Table 5: Weighted average f1-score (binary classification) for
baseline and bias mitigated models, evaluated cross-domain.
The highest score for each dataset permutation in bold.
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