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ABSTRACT

Recent advances in neural network based language models lead to successful deployments of such
models, improving user experience in various applications. It has been demonstrated that strong
performance of language models may come along with the ability to memorize rare training samples,
which poses serious privacy threats in case the model training is conducted on confidential user content.
This necessitates privacy monitoring techniques to minimize the chance of possible privacy breaches
for the models deployed in practice. In this work, we introduce a methodology that investigates
identifying the user content in the training data that could be leaked under a strong and realistic threat
model. We propose two metrics to quantify user-level data leakage by measuring a model’s ability
to produce unique sentence fragments within training data. Our metrics further enable comparing
different models trained on the same data in terms of privacy. We demonstrate our approach through
extensive numerical studies on real-world datasets such as email and forum conversations. We further
illustrate how the proposed metrics can be utilized to investigate the efficacy of mitigations like
differentially private training or API hardening.

1 Introduction

Advances in language modeling have produced high-capacity models which perform very well on many language
tasks. Language models are of particular interest as they are capable of generating free-form text, given a context, or
even unprompted. There is a plethora of applications where language models have the opportunity to improve user
experience, and many of them have recently been deployed in practice to do so, such as text auto-completion in emails
and predictive keyboards (illustrated in Figure[T). Interestingly, language models with massive capacities have been
shown to achieve strong performance in other tasks as well, such as translation, question-answering etc. even in a zero
shot setting without fine-tuning in some cases [Brown et al.| [2020a].

On the other hand, recent studies have demonstrated that these models can memorize training samples, which can be
subsequently reconstructed using probing attacks, or even during free-form generation [Carlini et al.l 2019} |2020].
While domain adaptation of general phrases is intended, the model should not leak or memorize rare sequences which
could lead to a privacy breach according to GDPR, such as singling out of a user [GDPR Article 29 Working Party},
2014].

Efforts to mitigate the risk that a model may yield rare samples which violate privacy include applying differential
privacy (DP) during training [Dworkl 2011} Song et al., 2013} |Abadi et al.,|2016]], as well as API hardening to ensure
that attackers have little or no access to the model’s underlying probability distributions. While these approaches can
be successful, it is challenging to quantify the residual privacy risks in language models, whether or not mitigations
have been applied. In this work we propose a methodology for privacy investigations of a language model trained on
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Figure 1: Two examples of language model deployments in practice. The figure on the left (image credit: [Lambert,

2018])) is the Smart Compose feature for Gmail [Chen et al.,2019] and the figure on the right (image credit: [Microsoft
§w1ftKey ]) is the Microsoft SwiftKey Keyboard.

confidential user content. Furthermore, we aim to produce metrics quantifying the likelihood a model might leak rare
training data, under the strictest black-box assumptions about access to the model, i.e. that attackers can access only the
model’s top-k prediction at each token position, given an input prefix. This choice of threat model enables us to assess a
model’s risk for realistic deployment scenarios, assuming best practices in API hardening are employed.

1.1 Contributions
This paper makes the following contributions:

1. We propose a methodology called training data leakage report that investigates the user content in the training
data that could be leaked by the model when prompted with the associated context. We introduce a set of
features to help assess the leakable content in terms of user-level privacy.

2. From our leakage report we introduce metrics that allow comparing models of various kinds (e.g. a DP
model vs. a non-DP model) that are trained on the same training data in terms of privacy. Our metrics are
straightforward to interpret compared to other privacy quantifiers such as differential privacy’s ¢, which may
be difficult to relate to real-world risks.

3. We demonstrate experimental results on real-world datasets illustrating the generation of the leakage report. We
show how the proposed privacy investigation can provide valuable information towards protecting user-level
privacy. We further study the effects of mitigation techniques such as differential privacy and API hardening
through the metrics introduced in this work.

The outline of the paper is as follows. In Section[2} we provide background information for the language models
focused in this work. Section [3|defines the threat model and discusses the ability of an adversary towards attacking a
language model deployed in practice. In Section[d] we introduce our methodology of investigating a model trained on
user content for the purpose of user-level privacy protection. In Section[5] we propose metrics to quantify user-level
privacy leakage. We demonstrate our framework through numerical studies on real-world datasets in Section[f] Section
[7]discusses the related work and future directions and concludes the paper.

2 Background: Language Models

Language modelinﬂ is the task of learning the underlying probability distribution over sequence of words in a

natural language. A statistical model for a sequence of tokens wy, ..., w, is represented by the joint probability
Pr(wy,...,w,), which can be further decomposed as the product of conditional probabilities:
n
Pr(wl,...,wn):HPr(wi|w1,...,w¢,1). )
i=1
Here Pr(w;|wy, ..., w;_1) represents the probability of the occurrence of token w; given the previous token sequence
Wy, -, Wi—1.

We refer to statistical language modeling throughout the paper.
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It has been shown that neural networks can be utilized to estimate these conditional distributions effectively and be
employed as language models [Bengio et al.,[2003]. Given an unsupervised corpus of tokens W = {w1,...,w,}, a
standard language modeling objective is to maximize the following likelihood functionﬂ

L(0) = Zlog Pr(w;|wy, ..., w;—1;0),

i=1

where the conditional probability on wj is calculated by evaluating the neural network with parameters € on the sequence
Wyyeoo,Wi—1.

The quality of a language model is commonly measured by two metrics, namely perplexity and top-k accuracy.
Perplexity measures the likelihood of text sequences and is defined as PP(wy, . .., w,) = 27! where

1 n
l=— 1 P i yeee,Wi—1).
nz 0gy Pr(wifwy, ..., wi—1)

i=1

The evaluation of the perplexity on unseen data indicates how well the model fits the underlying distribution of the
language. The smaller the value of perplexity, the better the language model is at modeling the data. Top-k accuracy
metric is defined as the ratio of the number of correct predictions to the total number of tokensﬂ The relevance of the
parameter k£ depends on the application. For instance, the accuracy for the highest-likelihood candidate (top-1 accuracy)
is important for text auto-completion feature in emails [|Chen et al.l 2019] whereas top-3 accuracy is also of interest for
predictive keyboards (Microsoft SwiftKey, [Gboard). See Figure [I| for an illustrating example.

There are a vast number of architectures employed for language models. At a high level, these architectures are either
derived from variants of recurrent neural networks (RNNs) [Mikolov et al., 2010, Sundermeyer et al., 2012 |Peters et al.,
2018]] or based on self-attention mechanisms of the transformer [[Vaswani et al., 2017, Radford et al.,[2018, [Howard
and Ruder; 2018| |Devlin et al., 2019, [Yang et al.L [2019, Radford et al.| 2019, Sun et al., 2019, Brown et al., 2020a}
Turing-NLG, [2020]. Recently, large transformer based models have been achieving impressive state-of-the-art results in
a variety of tasks [Brown et al.,2020al]. On the other hand, RNN based architectures might be favored in practice as
well, e.g. when there are strict latency or memory requirements [Chen et al., 2019].

3 Threat Model

Our threat model is tailored for privacy considerations when a language model is trained on confidential user content,
which is highly likely to contain sensitive information that would lead to privacy violations in case they are leaked by the
model [GDPR Article 29 Working Party} 2014, |White House Office of Science and Technology Policy (OSTP),2019].
Such privacy considerations are in fact legitimate as language models perform next token prediction so they could be
used in a generative fashion by entering a particular text prefix and asking the model to auto-complete indefinitely. Here,
the danger is imminent as it is not a priori clear what will be leaked from the user content in the training data. We note
that any language model with non-zero utility will necessarily have the top-1 accuracy in the training data bounded away
from zero. Therefore, “something” will be leaked from the user content in the training datéﬂ Since the main objective of
training language models is modeling the underlying distribution of a language, the expectation is that well-generalized
models do not memorize the rare sensitive information in the training data, as they are out-of-distribution and irrelevant
to the learning task, hence unnecessary to improve the model performance. Unfortunately, recent results show that
this is not the case [Carlini et al.} 2019, 2020, Feldman, |2020, |Brown et al., |2020b), |Petroni et al.,[2019]. In fact, very
recently it has been shown that when the data distribution is long-tailed (as is the natural language [Newman, [2005[])
label memorization is necessary for achieving near-optimal accuracy on test data [Feldman, |2020, Brown et al., 2020b].
Therefore, it is imperative to build privacy monitoring techniques to minimize the chances of an “accidental” data
leakage that would lead to privacy violations.

Based on the discussion above, we consider a practical threat model that is relevant to the language models deployed
in practice. We assume a black-box access, where a curious or malevolent user can query a pre-trained and deployed
language model on any sequence of tokens wq, . .., w; and receive the top-k predictions returned by the model for
the next token w; 1. See Figure 2| for an illustrating example. We place no assumption on the parameter k and let it
be completely determined by the particular application for which the query is made (see Figure[I)). We note that the

3The decomposition in (T)) is called forward autoregressive factorization. Although not all the works referred in this section
use this factorization to train language models, we are solely interested in how they operate when they are deployed in practice.
Therefore, we do not delve into the details of exact training procedure for each architecture.

*When k > 1, correct prediction refers to the label being in the list of & predictions returned by the model.

>We will use the terms “leak” and “correct prediction on the training data” for a model interchangeably in what follows.
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threat model does not assume the availability of confidence scores or probabilities for the predictions and it is trivially
applicable to the deployed models in practice. In fact, even the availability of the next token prediction(s) may not
always be the case if the model does not return any prediction under certain conditions (e.g. when the prediction score
is below a pre-fixed triggering threshold 2019]]). However, since there is no guarantee that all sensitive
information will be on the safe side of the triggering threshold, we believe it might be better to have protection against
the worst case where the model prediction is available for the next token w; 1 when any sequence of tokens w1, ..., w;
is queried.
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Figure 2: Tllustration of our threat model. A language model is deployed after being trained on user content. One can
query the model with a sequence of tokens and receive the top-k predictions for the next token (top-1 in this example).
A curious user where SNAME represents the name of the user queries the model to see if their address is leaked by the
model. More dangerously, an adversary inputs a directed query to learn the phone number of the targeted user.

The threat model allows a curious user to know whether any sensitive information in their data is leaked by the model.
Therefore, the data owner can use any prefix in their data to query the model. On the other hand, the threat model also
includes the case of a malevolent user, who could input directed queries in order to extract sensitive information about a
user specifically targeted. Needless to say, successful extraction of any sensitive information could have catastrophic
effects for the corresponding user.

4 Training Data Leakage Report

In this section, we introduce our framework to investigate a model trained on user content for the purpose of user-level
privacy protection. We fix the notation first.

Notation For a language model trained on user content, let &/ = {Uq, ..., U,} specify the set of users. For each user
U; €U fori € {1,2,...,n}, we define the set D; = {D}, D?,... ,DlDiI} (|D;| refers to the size of the set D;) as

K2
the corresponding content on which the language model is trained. Each content D] is basically a sequence of tokens

Wi, W2, -+ W) pd ﬂ See Figurefor an illustration of how a language model is typically trained on a sequence of tokens.

The training data D is the combination of all user content, i.e., D = Ujc(1.2.....n} Di = Uic(1,2,....n}, je{1,2.....|Di]} Df

We introduce our training data leakage report on a language model trained on the training data D. After the training
procedure is completed, the first step of our framework is to run the model through the training data and collect its
correct predictions in the training data. We illustrate this step with an example in Figure[d] This collection consists
of sequences of tokens where the correct prediction (depicted in green) is observed in top-k predictions of the model
consecutively. We emphasize that consecutive correct predictions is an important phenomenon because the longer
the model leaks a training sequence w;1,w;+2, ... having seen the context ws, ..., w;, the more it discloses user
content, causing privacy concerns. Therefore, we do not break sequences where the model provides correct predictions
consecutively and collect all such sequences in the training data. In Algorithm[T] we provide the pseudo-code to collect
the correct predictions of the model as described above. Let us denote this collection as S. We note that S is a multiset
because it can contain multiple instances of a correctly predicted sequence in the training dat;ﬂ

Based on the preprocessing of the training data, this could be a sentence, a paragraph (e.g. a Reddit post), or an email etc. We
emphasize that D; may even be considered as one large text sequence since it belongs to a single user and that is all it matters for our
purpose.

"Henceforth we will use the terms set and multiset interchangeably for S.
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Figure 3: A typical way of training a language model on a sequence of tokens w1, wa, . . ., w, (RNN type architecture
is depicted for the sake of illustration). The model is yielding a probability distribution §**! having seen the context
wy, ..., w; to predict the next token w; ;1 fori € {1,2,...,n}. We note that the loss function is composed of loss at
each time step, therefore, the model learns to predict w;1 having seen the tokens wy, ..., w; foralli € {1,2,...,n}.
Have is a first step of my method <END>

<START> This is the first step of our approach <END>

Sequence: This is the first step of our approach
Model predictions aligned: Have is a first step of my method
Set of correct predictions:  {“is”, “first step of”}

Figure 4: An illustration of the collection of correct model predictions. We run the model through each sequence in the
training data and obtain the top-k (top-1 in this example) prediction(s). We then collect the sequence of tokens where
the model consecutively provides the correct prediction.

The main part of our training data leakage report is to provide key features of each sequence in the set S, which contain
important information for privacy investigations. We call these features as fotal count in S, user count in S, total
count in D, user count in D, context(s), and perplexity(ies). We next describe each feature in detail and provide the
accompanying Table|[T]as an illustrative example.

total count in S:  This is simply the number of occurrences of a sequence in the multiset S. This feature shows in
total how many times the model leaks a sequence given the correct context. A large number may seem to indicate that
the sequence is common and unproblematic in terms of privacy, however, that may not be the case if it is present in only
a single user’s data, which is captured in the next feature.

user count in S:  For any sequence in S where the total count is larger than one, here we count the number of distinct
users for which the correct prediction of this sequence is made. This is important because a sensitive information of
a single user may appear multiple times in their data (e.g. address being emailed a number of times), which can be
memorized by the model. Along with the previous feature we can investigate such cases effectively with this feature.

total count in D: In the previous two features, we count the occurrences in the set S. In the next two features, we
count the occurrences in the training data D. This may be helpful because for a sequence that is predicted correctly only
for a single user, i.e. user count in S is one, this may not immediately imply that a sensitive information is leaked by
the model. It may be the case that the sequence appears many times among various users’ data, which could provide
“plausible deniability” in the sense that many other users contributed the model to learn this sequence. This can be
n_|Dil )
calculated by simple string matching and formally expressed as »_, > (count of w in D7) for a sequence w € S.
i=1j=1
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Table 1: An artificial example to describe the features of our training data leakage report. In this example, there is a
sequence “very much” appearing two times in the multiset S, meaning that it is predicted correctly two times by the
model. These correct predictions appear in a single user’s data (either in a single D? or two different D}* and D;* for
some user U;). The corresponding contexts on which the model produces this correct sequence are “Thank you” and
“I like cats” and the corresponding perplexities are 1.3 and 3.6. On the other hand, the sequence “very much” itself
appears ten times in the training data D (only in two of which the model predicts the sequence correctly), among five
user’s data.

S TOTAL # IN USER#INS TOTAL#IND USER#IND CONTEXT(S) PERP.
S
“VERY MUCH” 2 1 10 5 [“THANK You”, [1.3,3.6]

“I LIKE CATS”’]

user count in D: Connected to the previous feature, here we count the number of distinct users for which a sequence

in S is found in their data. We note that here we do not consider whether the model correctly predicts the sequence or not

given the right context, that was done in user count in S. Instead, we calculate this by simply checking if the sequence can
n

be found in a user’s data via string match. This can be formally expressed as > 1(3j € {1,2,...,|D;|} s.t. w C DY)
i=1

where 1(+) is an indicator function for a sequence w € S. Sequences for which the user count in D is large are unlikely

to be sensitive for a single user. However, there might still be concerning cases, e.g., the model predicts the sequence

correctly only for a single user (i.e. user count in S is one) although there is plausible deniability as discussed previously.

context(s) For any sequence in S, this feature provides the corresponding context(s) with which when prompted the
model it produces the sequence correctly. This feature is useful to check for instance if long sequences can be found
with short contexts, which would indicate that the model completes a long user content when prompted with a short
initial context.

perplexity(ies) Connected to the feature above, this feature provides the corresponding perplexity(ies) for any
sequence in S. This is also an important feature as it shows how certain the model is when predicting the sequence
given the right context. Furthermore, it also allows comparing the correct predictions of the model with a public modeﬂ
that is not trained on D. Considering a sequence in S where the user count in D is one, a small perplexity on the
language model along with a large perplexity on public model might indicate that a sensitive information is leaked
about the corresponding user since the sequence is “surprising” to the public model by the large perplexity.

8Public model refers to a language model trained on a public dataset.

Algorithm 1 The collection of correct model predictions.

Input: A language model LM (-) and the corresponding training data D
Output: The (multi)set S of correct predictions
Initialize S = []
fori =1tondo
for j = 1to |D;| do
Initialize W = 7
Let D! = [wy, o ’w\DZI]
for | = 1to|D/| do
Obtain top-k predictions preds = LM (D][: 1])
if w; € preds then
Append w; to W
else if W = “” then
Append W to S and initialize W = *”
end if
end for
end for
end for
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Before concluding this section, we discuss a number of points regarding our training data leakage report.

* We note that in our framework the sequences in the set S are created when the model is prompted with the
“right” context, i.e. the context on which the model is trained for next token prediction task. However, a
sensitive information might even be leaked under a context different from any one that is in the training data.
Such a case might be missed if the same sensitive information is predicted wrong under the context in the
training data, therefore not being included in the set S. Looking at the loss function in Figure [3] intuitively
one can expect that the model would more likely predict the sequence under the context it has seen during
training than any other context, however, there is also no guarantee that this will always be the case. Therefore,
it might be worthwhile to extend the set of contexts beyond the training data and then create the set S. This is
an interesting future direction that could strengthen the privacy investigation of a language model.

Such a detailed investigation of sequences in our training data leakage report may not be possible if the model
training is done with no access to look at the training data [Chen et al.,[2019]]. In that case, we can simply
replace each sequence and its corresponding context(s) with their length of tokens and still obtain valuable
information. For example, we can investigate the length of the sequences for which the user count in S is
small to see if long completions are possible or check the length of the contexts to see if the leakage is possible
with short contexts. The perplexities could also be very helpful in this case because we can measure how
surprising each sequence is to a public model that is only trained on public dataset(s). If the perplexities are
similar, then this indicates that the prediction is as “familiar” to the public model, therefore, unlikely to be a
privacy concern for a user.

5 Metrics to Quantify Privacy Leakage

Our training data leakage report may include a massive number of sequences when the training data D is large, making
privacy investigations infeasible. However, simple filtering procedures can be applied to reduce the number of sequences
effectively. For instance, keeping the ones for which the user count in S is less than p for some threshold p of interest is
a reasonable operation. The sequences filtered here would the ones where there are at least p users having this sequence
in their data and the model predicts the sequence correctly for each one of these users. It becomes less and less likely to
be a privacy concern as p increases. From the perspective of model predictions, this is reminiscent of k-anonymity
[Sweeney, [2002] as a famous data anonymization techniqu

Another important case is regarding the sequences in S for which the user count in D is one (automatically, user count
in S is also one), i.e., there is only one user having this sequence in their data and the model leaks the sequence when
prompted with the corresponding contex This is inarguably the case with the most potential to result in privacy
violations.

Building on this, we propose two metrics to quantify user-level privacy leakage, which are straightforward to interpret,
and compare different models trained on the same training data in terms of privacy:

1. The first metric is the number of sequences in the set S that are unique for a user, i.e. the sequences for which
the user count in D is one.

2. The second metric is a curated version of the first metric. We still consider the sequences in the set S that are
unique for a user but we remove the ones for which the ratio of the perplexity with respect to a public model
and our language model is below some threshold t, i.e. PPpypiic (w) /PP (w) < t. This basically filters out the
unique sequences that have similar perplexities with respect to a public model as there is plausible deniability
of similar leakage possibility, given a public model. We further define the worst-case leakage epsilon

2

measuring the perplexity ratio with respect to a public model maximized over the unique sequences in the set
S to capture the worst-case scenario.

We next discuss the pros and cons of our proposed metrics. Our first metric is very simple and easy to use. However, we
observe in our experiments that even a public model that is not trained on a private data can predict unique sequences in

9Since the contexts will likely be different, k-anonymity is still substantially more powerful for anonymization.

"%r contexts. Note that the total count in D and total count in S can still be arbitrary since the sequence can appear multiple times
in the user’s data (e.g. appearing 10 times while in 5 of them the model predicts the sequence correctly.). Nevertheless, since it
belongs to only one user, the sequence should be protected equally.
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the private data. Such unique sequences would likely not constitute a privacy violation since the public model has not
seen any private data in its training. Another example of no privacy violation is when a sequence is unique to a user but
it happens to be copied from the prefix. Models with attention mechanism [Bahdanau et al., 2016| have a strong ability
to copy tokens from previous context to predict the next token. A model leaking a unique sequence by applying the
copying mechanism may not be considered to violate privacy. To handle such cases, we can use the number of unique
sequences obtained from a public model as a benchmark to compare models trained on private data. However, the main
disadvantage of this metric is that for a model trained on private data, the metric does not consider the sensitivity of the
unique sequences leaked by this model. Therefore, one would not know the status of the unique sequences beyond the
ones that can be predicted by a public model.

Our second metric touches on this point by eliminating the sequences that do not look surprising to a public model.
However, the main disadvantage of this metric is the hardship of the choice of the threshold ¢. It is challenging to agree
on a value that is assuring privacy protection. For this reason, we introduce the term worst-case leakage epsilon, denoted
by €;, measuring the worst case perplexity ratio with respect to a public model over the unique sequences in the set S.
This is motivated by the definition of differential privacy, which bounds the worst-case effect of a single substitution in
the data. A smaller ¢; for a language model translates into a better privacy protection as the unique sequences leaked by
the model will have relatively similar perplexities with respect to a public model, providing plausible deniability for
each one of them.

The final point related to both metrics is the choice of the public model. Assuming that the private data has no connection
to public datasets, ideally one would take the strongest model that is trained on various public datasets to provide a good
benchmark. However, the distribution of any public dataset may differ substantially to that of a private one, leading to
a pessimistic ¢;. In that case, one can also consider removing the users for which the language model leaks a unique
sequence and all their data from the training data and train another model on the remaining users. This latter model may
be employed as a “public model” in Equation (2) to calculate ¢; since it has not seen any data of a user in the set S
during the training.

6 Case Study: Tab Attack

In this section, we provide a case study of our training data leakage report through numerous experimental settings.
We will consider an attack setting that has access to top-1 predictions of a language model. Having in mind the text
auto-completion feature in emails example where the predictions are applied by pressing the TAB key on the keyboard
(see Figure[I)), we dub this attack as the tab attack. We will investigate the unique sequences (i.e. the ones with the user
count in D is one) that could be leaked through the tab attack by providing the corresponding context. These can simply
be obtained by filtering the sequences in the set S and keeping the ones with the user count in D is one. We note that
such sequences are most likely to cause privacy concerns as they are unique content for a user in the training data. We
further note that although the attacker ability is limited to top-1 predictions, the model builder can utilize all information
to investigate the unique sequences that could be leaked by the tab attack prior to the model deployment. We will apply
our leakage report to the unique sequences in the set S to assess the attack surface under the tab attack threat model.

6.1 Avocado dataset

Dataset We use the Avocado dataset [Oard et al.,2015]] that contains 322k email correspondences of 413 users. We
use the 80%/20% training/val set split. We emphasize that this is a dataset where the users are not independent (i.e.
sensitive information related to both the company and the users such as names, positions, partner company names
etc. are shared across communications). This is an interesting setting as it is related to businesses providing language
models to enterprise customers using their data and it also provides important insights in terms of user-level privacy
protection.

Model We use a two-layer LSTM model as the language model for the next-word prediction task. We set both the
embedding dimension and LSTM hidden-representation size to 128. We use the Adam optimizer with the learning rate
set to le-3 and batch size to 32. We fix the vocabulary to the most frequent 10k tokens in the training corpus (out of 95k
tokens).

In this experiment, we train the language model for 25 epochs and obtain one snapshot of the model at each epoch
(around the first quarter of an epoch). We run the tab attack and investigate the results (i.e. our training data leakage
report with sequences where user count in D is one) for each snapshot of the model. Figure[5|shows the progress of the
model performance and the tab attack statistics as the model is being trained for 25 epochs. We first note from Figure
[54 that the train and validation perplexities are close for the language model, indicating that the model is not overfitted.
This is due to choosing a rather small capacity model (less than 3M parameters). Somewhat expectedly, we observe
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Figure 5: Results of the experiment on the language model trained on Avocado dataset [Oard et al.,|2015]]. Figure (a)
presents the performance of the model with the perplexity on the train and validation set. Tab attack is performed at
each epoch on a snapshot of the model. Figure (b) shows the histogram of the length of the unique sequences leaked
by the model over 25 epochs. Figure (c) presents the perplexities of these unique sequences. The width of the bins
are proportional to the number of sequences that appear in them at the corresponding perplexity. We excluded last 10
epochs in Figure (c) for the sake of visualization.

in Figure [5b] that the number of unique sequences leaked by the model increases consistently as the model training
continues (colors getting darker as we go right for each sequence length). Another interesting observation is that the
majority of the unique sequences are having perplexities below 3 as the training continues. This unfortunately indicates
that not returning any prediction when confidence is below a certain threshold may not be sufficient to provide privacy
in some cases.

Looking at the individual unique sequences, we already see sensitive information such as names, names with positions,
product specific information and partner company names being leaked by the model starting at epoch ﬂ We point out
that the reason why unique sequences of such sensitive information can be leaked by the model even in the beginning of
the training is that the user content is highly correlated. This means that the snippets of these unique sequences appear
many times in the training data, although the particular order appears only once (e.g. the sequence w1, wo, w3, w4 being
unique while 2-grams wy, ws and wo, w3 and w3, w4 appearing many times). This causes the model to produce a long
chain of correct predictions by learning parts of the connections from multiple users and the remaining few ones from a
single user. Further observations of this experiment is presented below:

* We believe that personally identifiable information (PII) scrubbing of the training data should be a crucial first
step, especially if the user content is correlated, since choosing a small subset of the most frequent tokens
does not disable the sensitive tokens to find their way into the vocabulary when they are repeated many times
across users. Even when we fix the vocabulary with words appearing in at least 25 users’ data (which hurts
the utility substantially), we still observe sensitive tokens present in the vocabulary. Therefore, in general
the ideal setting would be to have users as independent as possible and fixing the vocabulary after applying
PII scrubbing with the tokens that appear among many users’ data, instead of the most frequent ones, in case
sensitive information might be repeated many times in a single user’s data.

* We do not claim that any unique sequence leaked by the model would be a privacy concern. In fact, there are
seemingly common sequences such as “been able to do that” with the context “... I have not” that happen to
be unique for a user in the training data and the model provides the correct predictioﬂ We note that this
prediction may not be as surprising for a public model (i.e. low perplexity), therefore, it is possible to filter
these cases further by comparing with a public model in perplexities.

* We try the idea of not returning any prediction when the perplexity is above a certain threshold (i.e. the model
does not have high confidence). Choosing the threshold as 8, the accuracy of the snapshot at the last epoch on
the validation set drops from 28.29% to 26.19%. This had only a little effect while leaving many of the unique
sequences with sensitive information untouched. Taking things to extremes, setting the threshold as 3 using
the model snapshot at epoch 5 returns no unique sequences, but with an accuracy of 14.81%. We believe that
this technique along with a vocabulary fixed with the suggested principles above could potentially find better
privacy-utility tradeoffs.

"Due to strict licensing requirements of the Avocado dataset, we are unable to provide specific examples. However, we present
detailed results in the next experiment.

12“peen able to do” appears 13 times and “to do that” appears 36 times in the data. The text has been altered to comply with the
Avocado license.
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Table 2: Results of the experiment on the language models trained on Reddit dataset [[Al-Rfou et al., | 2016]. We provide
the perplexity and accuracy on the validation set to compare the performances of the models. In the next column, we
provide the number of unique sequences in the set S for each model. We calculate worst-case leakage epsilon ¢; for
some of the models for comparison in the last column.

MODEL VAL PERP VAL ACC (%) # UNIQUESEQ.INS ¢
PRIVATE LM 69.41 23.7 3757 -
DP-LM RANINI € = 3.28 290.03 14.46 0 -
DP-LM RANINI € = 4.68 130.32 19.60 5 -
DP-LM RANINI € = 6.20 107.77 20.83 11 1.89
DP-LM RANINI € = 26.40 96.54 21.48 30 -
PuBLIC LM 757.48 13.1 159 -
DP-LM PUBINI € = 2.98 183.09 19.71 157 1.34
DP-LM PUBINI € = 4.47 106.70 21.90 203 -
DP-LM PUBINI € = 6.68 92.76 22.20 246 3.78

6.2 Reddit dataset

We next study a large-scale example as a more realistic setup for the deployed language models in practice.

Dataset We use a large dataset of Reddit posts, as decribed by |Al-Rfou et al.[[2016], that contains 140M sentences
from 4.4M users crawled from Reddit posts. It is split into 90% training and 10% validation at random. Reddit is an
interesting conversational dataset that has been used in privacy research since each post in the dataset is keyed by a user,
so the data can be grouped by users to provide user-level privacy. We provide three sets of language models trained on
the private Reddit dataset.

1. A language model trained on the Reddit dataset. This will be referred to as Private LM in our results.

2. A language model trained on the Reddit dataset with differential privacy [Abadi et al.,2016]]. We take four
snapshots of the model during training, corresponding to four differentially-private language models with
epsilons 3.28, 4.68, 6.20, and 26. The training begins with a random initialization of the weights. These
models will be referred to as DP-LM Ranlni € = -.

3. A language model trained on the Reddit dataset with differential privacy. The difference here is that the model
weights are initialized from a public model trained on Google News dataset [[Chelba et al.| [2013]]. It has
been shown that with transfer learning, one can obtain strong privacy guarantees with a minor cost in utility
[[Abadi et al.| 2016, [Tramer and Boneh, [2020}, [Papernot et al., 2020]. We similarly take three snapshots of
the model during training, corresponding to three differentially-private language models with epsilons 2.98,
4.47, and 6.68. These models and the public model will be referred to as DP-LM Pubini ¢ = - and Public LM
respectively.

The model architecture is same for all these models and the details are specified below.

Model We use a one-layer GRU model as the language model for the next-word prediction task. The embedding
size is set to 160 and the hidden size to 512, and the vocabulary is fixed to the most frequent 10k words in the training
corpus (out of 3.2M words). We use the Adamax optimizer with the learning rate set to le-3 and the batch size is set to
3072 in the differentially-private training and to 512 otherwise.

We provide in Table 2] the performances of the models and the result of the tab attack for each of them. We discuss the
results of this experiment in what follows.

We observe from Table 2] that the private LM that is trained without differential privacy leaks a huge number of unique
sequences (3757) from the training data. There are 759 unique sequences for which the number of tokens is larger
than 9. A majority of these examples are coming from highly-repeated sentences (728 of these sequences are repeated
somewhere between 50-34372 times) by the bots in the Reddit datase@ This shows the necessity of de-duplication at a
granular level (e.g. removal of sentence duplicates) as also observed by |Carlini et al.[[2019] 2020].

3The models satisfy user-level DP and § < 1/(# users) same for all models.

14 An example of a unique sequence memorized by the model is “has been automatically removed because the title does not include
one of the required tags .” repeated 5377 times in the bot’s data.
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For the DP-LMs that are snapshots of a model trained with random initialization of weights, we observe small
number of unique sequences leaked by the models. Interestingly, we get no unique sequence with the first one having
e = 3.28, although there is a high cost in terms of utility. We provide the list of unique sequences for the models
with € = 4.68, 6.20 and 26.4 in Table 3] 4] and [5|of Appendix [A]respectively. We observe the efficacy of user-level
differentially private language model training by noting that the unique sequences with large repetitions that were
memorized by the private model have all disappeared with DP-LMs. Furthermore, there is a substantial decrease in the
number of unique sequences, even for the DP-LM with relatively high epsilon value ¢ = 26.8, which does not provide a
reasonable theoretical privacy guarantee.

A phenomenon we have observed consistently over all experiments is about the punctuation. The appearances of
punctuation in between common n-grams in the training data cause the existence of many unique sequences. Almost all
unique sequences for the DP-LMs presented in Appendix [A]have a punctuation. In our experiments we did not exclude
the punctuation from the model predictions and treated them as any other token in the training data.

For the DP-LMs that are snapshots of a model trained by initialization from a public model, we observe relatively larger
number of unique sequences leaked by the models. However, we again note that a direct comparison is not fair because
the public model itself can predict 159 unique sequences from the private data, without seeing any private data in its
training. Since the differentially private training is initialized from the public model in this case, it should be expected
to obtain larger number of unique sequences. The worst-case leakage epsilon ¢; may provide a better ground for a fair
comparison of models trained in different ways (e.g. random initialization vs. transfer learning), however, there is a
dependence on the public model of choice.

Finally, we calculate the worst-case leakage epsilon ¢; for three DP-LMs that provide interesting conclusions. The
public models in the calculation of Equation (2) are as follows. For each model, we take the users who are the owners of
the unique sequences leaked by the model and remove all their data from the training data. We subsequently train a new
model on the remaining users. We consider the new model as the public model for the users of the unique sequences
since it has not seen any data of these users during its training. We note that although DP-LM Ranlni ¢ = 6.20 model
leaks 11 unique sequences, the worst case leakage epsilon ¢ is just 1.89. This indicates that the unique sequences
leaked by the model can also be simply learned from other users because they have similar perplexities with respect
to the public model. DP-LM Publni € = 2.98 model has ¢; = 1.34, much smaller than the other two models and this
may not be surprising since ¢ = 2.98 provides much stronger privacy guarantees compared to ¢ = 6.20 and € = 6.68.
Finally, DP-LM Publni € = 6.68 model has ¢; = 3.78, which is significantly larger than the DP-LM Ranlni € = 6.20
model. We note that there is no direct relationship between e of DP and our ¢;, however, we believe that ¢; = 3.78 is
somewhat pessimistic for the former model. The reason is related to ¢; being dependent on the public model of choice.
Ideally, one would choose a powerful public model to get competitive perplexities, however, we trained the same model
on the dataset described above. We leave it as a future work to try public models with more capacities to see the effect
on the ¢; values.

7 Related Work and Conclusion

A wide body of work has demonstrated privacy issues in general for machine learning models trained on personal
data. Language models are among the most to suffer as they are capable of generating text which may potentially leak
sensitive user content and lead to serious privacy violations.

Zhang et al.[[2017] show that deep learning models can achieve perfect accuracy even on randomly labeled data. Such
memorization capability may in fact be needed to achieve near-optimal accuracy on test data when the data distribution
is long-tailed as recently shown by [Feldman|[2020], Brown et al.|[2020b|]. Unfortunately this can lead to a successful
training data extraction attack, as in the case for the concurrent work [[Carlini et al.} 2020] that can recover individual
training examples from the GPT-2 language model [Radford et al.,|2019]. In their method, |Carlini et al.[[2020] generate
a list of sequences by sampling from the GPT-2 language model and then curate it by using the perplexity measure. In a
related line of work which exploits the increasingly common transfer learning setup, Zanella-Béguelin et al.| [[2020]]
have demonstrated that having simultaneous black box access to the pre-trained and fine-tuned language models allows
them to extract rare sequences from the smaller and typically more sensitive fine-tuning dataset. Both attacks rely on
the model output beyond top-1 or top-3 predictions along with the perplexity measure. Access to this information may
easily be restricted in deployed language models. Nevertheless, there are serious privacy concerns since the attacks can
extract personally identifiable information even if they are present in one document in the training data. We believe that
our proposed procedure for privacy investigations of a language model trained on user content could be very beneficial
to protect user-level privacy in the presence of such attacks.

On the other hand, |Carlini et al.| [2019]] introduced the exposure metric to quantitatively assess the unintentional
memorization phenomenon occurring in generative sequence models. They do so by inserting randomly-chosen canary
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sequences a varying number of times into the training data and measuring the relative difference in perplexity between
inserted canaries and non-inserted random sequences. Our work is complementary in the sense that we are investigating
the information leaked from user content in the training data, having in mind a strong threat model where one can query
the language model with the precise context appearing in the training data. We believe that our proposed metrics along
with the exposure metric can be employed together to provide strong privacy guarantees for a deployed language model.

Another line of work has studied the vulnerability of machine learning models to membership inference attack [[Shokri
et al., 2017, Yeom et al., 2018} |Song and Shmatikov, 2019, Nasr et al., 2019, [Long et al., 2018| |Hayes et al., 01 Jan,
2019 Truex et al., 2018, [Irolla and Chatell 2019, Hisamoto et al.| 2020, Salem et al., 2018| |Sablayrolles et al.,| 2019}
Leino and Fredrikson, [Choquette-Choo et al., 2020]. The goal is to determine if a particular data record (or more
generally data of a given user) belongs to the training set of the model. Although being an indirect leakage, membership
inference is considered as a confidentiality violation and potential threat to the training data from models [Murakonda
and Shokri, |2020].

The main framework with theoretical guarantees for user-level privacy is the application of differential privacy (DP)
[Dwork, [2011] to model training. DP makes provable guarantees about the privacy of a stochastic function of a given
dataset. Differentially private stochastic gradient descent (DP-SGD) has been developed and applied to training machine
learning models [Song et al., 2013, |Abadi et al.,2016]. This is an active area of research with the goal of pushing the
frontiers of privacy-utility trade-off for deep neural networks.

7.1 Future work

We discuss a number of interesting future directions following our work:

» The proposed leakage report is based on central learning setting where the training data is stored at a central
server. It would be interesting to solve the challenge of applying this method to other settings, such as federated
learning [Kairouz et al.,2019]] where machine learning models are trained on decentralized on-device data.

* We are hopeful that the metrics proposed in this work, as a first attempt to quantify user-level privacy leakage,
would initiate further research on the topic, which will lead to further improvements on these metrics.

* It would be valuable to study the proposed methodology on more models/datasets, which would shed new
lights on the protection of user-level privacy when language models are trained on confidential user content.

7.2 Conclusion

Recent results show that language models are capable of memorizing training samples under the hood of their impressive
performance. This poses an immediate threat as leaking rare user content could lead to a privacy breach according to
regulations such as GDPR, e.g. due to singling out of a user.

This work introduced a methodology to investigate information leaked by a language model from its training data in
terms of privacy. We proposed metrics that could be used to quantify user-level privacy leakage and allow comparing
models trained on the same data in terms of privacy. We believe our framework can be incorporated into the training
platform of language models that would help assess the model from the perspective of privacy, along with its utility.
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A Tab attack for the DP-LLM Ranlni ¢ = - models in Section

We present the leakage report for the unique sequences coming out of the tab attack for the DP-LM Ranlni ¢ = - models

in Table 3] 4] and 3]
Table 3: Unique sequences from the tab attack for the DP-LM Ranlni ¢ = 4.68 model in Section

S TOTAL#IND USER#IND CONTEXT LEN
“WAY , I DON’T THINK IT IS” 1 1 2

“THE TIME , I WOULD BE” 1 1 8

“SAME THING , | WOULD BE” 1 1 10

“MEDIA ) IS NOT” 1 1 10

“NOT BE ) BUT” 1 1 9

Table 4: Unique sequences from the tab attack for the DP-LM Ranlni € = 6.20 model in Section The PPy, (+)
column is the perplexity of each sequence with respect to the DP-LM Ranlni € = 6.20 model. The PPppiic(-) column is
the perplexity of each sequence with respect to the public model. The last column is the ratio of the perplexities of the
previous two columns. The worst-case leakage epsilon is ¢; = 1.89. We refer the following model as the public model
in this table. We remove the users that are the owners of these unique sequences and all of their data (not just these
sequences) from the training data and train a new model with the remaining users. We consider the new model as a
public model for the users of these unique sequences since it has never seen any data of these users during training.

S TOTAL#IND USER#IND CONTEXT PPin(-) PPuubiic(+) PPoubic (*)
LEN PPin(-)
“SAID , I THINK YOU SHOULD BE ABLE 1 1 3 4.39 5.21 1.19
TO”
“ME A LINK TO YOUR POST ?” 1 1 4 3.33 3.49 1.05
“YOU FEEL BETTER , THEN YOU CAN” 1 1 4 5.4 5.53 1.02
“HAS ANY QUESTIONS OR CONCERNS, 1 1 5 5.1 8.87 1.74
PLEASE”
“AS T KNOW , I THINK THE” 1 1 3 3.75 4.5 1.2
“COURT , HE WOULD HAVE” 1 1 8 4.46 5.22 1.17
“WANT * TO BE ?” 1 1 13 4.17 3.63 0.87
“LIKE IS THAT YOU ARE” 1 1 4 5.35 5.78 1.08
“OF PEOPLE ) ARE” 1 1 6 5.14 4.21 0.82
“WARS , WE HAVE” 1 1 5 7.28 7.36 1.01
“WARS ) 1S” 1 1 7 3.53 6.69 1.89
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Table 5: Unique sequences from the tab attack for the DP-LM Ranlni € = 26.4 model in Section

S TOTAL #IND USER#IND CONTEXT LEN
“THE OTHER HAND , I WOULD HAVE TO” 2
“LOT OF PEOPLE WHO DON’T KNOW .” 12

“THE CASE , THEN I WOULD HAVE”
“FAIR , I DON’T THINK YOU CAN”
“IDEA WHAT YOU ARE DOING , YOU”
“ASTKNOW , I HAVE A”

“TO DO, ] WOULD HAVE TO”

“YOU FEEL BETTER , THEN YOU CAN”
“YOUR QUESTION , YOU CAN ONLY”
“OF CURIOSITY , I THINK THE”
“IDEA WHAT HE WAS DOING ?”
“DOING , YOU CAN GET A”

“COURT HAVE TO DO WITH THE”
“POINT , IT IS NOT .”

“DIFFERENT SITUATION , IT’S A”
“OF YEARS , I WAS”

“CHANGE , THEY WOULD BE”
“ASSAULT , I WOULD BE”

“* ARE * REALLY *”

“* DO IT , THEN”

“MEDIA ) IS NOT”

“COURT , THEN THEY”

“BUTTER , I WOULD”

“FRANCISCO , I THINK”

“COURT HAVE TO BE”

“OF PEOPLE ) ARE”

“% AGREE ).”

“ARABIA *18”

“ARABIA ) IS”

“WARS ) 1S”

S

N

[\

=]

b e e e e e b b e b e b e e e e e e e b e e e e e e
W

e T e T = S S N e T T T T T e T e S e S S e S e e N = T T
NNoo—ouvmaoaNd=mhroo—m AR, NINONDWERAREWLWOBMWS
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