Results from MathSciNet: *Mathematical Reviews* on the Web © Copyright American Mathematical Society 1999

98c:46128 46L10 46L05 47D25

Bratteli, O. (N-OSLO-IM); Jorgensen, P. E. T. (1-IA)

Endomorphisms of $\mathcal{B}(\mathcal{H})$. II. Finitely correlated states on \mathcal{O}_n . (English. English summary)

J. Funct. Anal. 145 (1997), no. 2, 323–373.

Let $\mathcal{B}(\mathcal{H})$ denote the algebra of all bounded linear operators on a separable, infinite-dimensional, complex Hilbert space \mathcal{H} . If $\alpha: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ is a unital endomorphism, the authors say that α is ergodic [resp., a shift] if $\{T \in \mathcal{B}(\mathcal{H}): \alpha(T) = T\}$ [resp., $\bigcap_{n=1}^{\infty} \alpha^n[\mathcal{B}(\mathcal{H})] \]$ consists only of scalar multiples of the identity operator. The (Powers) index of α is defined to be the extended integer n such that $\alpha[\mathcal{B}(\mathcal{H})]' \bigcap \mathcal{B}(\mathcal{H})$ is isomorphic to the factor of type I_n . Two unital endomorphisms α and β are conjugate if there exists an automorphism γ of $\mathcal{B}(\mathcal{H})$ such that $\alpha = \gamma \beta \gamma^{-1}$.

If O_n denotes the Cuntz algebra of order n and U(n) denotes the group of unitary, $n \times n$ complex matrices, then U(n) acts canonically on O_n . It is well known that there is a one-to-one correspondence between conjugacy classes of endomorphisms of $\mathcal{B}(\mathcal{H})$ of index n and unitary equivalence classes of nondegenerate *-representations of O_n in $\mathcal{B}(\mathcal{H})$ modulo the action of U(n). Ergodic endomorphisms correspond to irreducible representations, and hence pure states, of O_n , and shifts correspond to pure states such that when the corresponding GNS representation of O_n is restricted to the canonical UHF subalgebra of O_n , the resulting image is weakly dense in the space of all operators on the representation Hilbert space. The classification problem for ergodic endomorphisms and shifts of index n is thereby reduced to the classification of pure states of O_n up to the action of U(n) and unitary equivalence.

The main result of the paper under review is the characterization and classification of those pure states ω of O_n with the property that, for some nonnegative integer $k, \omega \circ \sigma^{k+1} = \omega \circ \sigma^k$, where σ is the canonical shift on O_n . The authors show that the set S_k of these states can be endowed naturally with the structure of a finite-dimensional, differentiable manifold. When an element of S_k restricts to a pure state of the canonical UHF subalgebra of O_n , it induces a shift on B(H), and the authors use the differentiable structure of S_k to analyze the conjugacy classes of these shifts.

{Part I of this work has been reviewed [O. Bratteli, P. E. T. Jorgensen and G. L. Price, in Quantization, nonlinear partial differential equations, and operator algebra (Cambridge, MA, 1994), 93–138, Proc. Sympos. Pure Math., 59, Amer. Math. Soc., Providence, RI, 1996; MR 97h:46107].} Steve Wright (1-OAKL)