2002g:46117 46L60 46N50 47N50 81R50 81S05

Jørgensen, Palle E. T. (1-IA); Proskurin, Daniil P. (UKR-AOS); Samoĭlenko, Yuriĭ S. (UKR-AOS)

The kernel of Fock representations of Wick algebras with braided operator of coefficients. (English. English summary) *Pacific J. Math.* **198** (2001), *no.* 1, 109–122.

Let $\mathcal{W}(T)$ with $\mathcal{H} = \mathbb{C}^d$ be the Wick algebra with coefficients T_{ij}^{kl} (satisfying $T_{ji}^{lk} = \overline{T}_{ij}^{kl}$), i.e. the universal *-algebra generated by a_i , $1 \leq i \leq d$, subject to the conditions $a_i^* a_j = \delta_{ij} 1 + \sum_{k,l=1}^d T_{ij}^{kl} a_l a_k^*$, which can be realized as the quotient algebra

$$\mathcal{T}(\mathcal{H},\mathcal{H}^*) / \langle e_i^* \otimes e_j - \delta_{ij} 1 - \sum_{k,l=1}^d T_{ij}^{kl} e_l \otimes e_k^* \rangle$$

of the full tensor algebra $\mathcal{T}(\mathcal{H}, \mathcal{H}^*)$ over \mathcal{H} and its dual \mathcal{H}^* . Note that the canonical inclusions of $T(\mathcal{H})$ and $T(\mathcal{H}^*)$ in $T(\mathcal{H}, \mathcal{H}^*)$ when composed with the quotient map give rise to algebra embeddings of $\Upsilon(\mathcal{H})$ and $\Upsilon(\mathcal{H}^*)$ in the algebra $\mathcal{W}(T)$. The algebra representation λ_0 , called the Fock representation, of $\mathcal{W}(T)$ on $\mathcal{T}(\mathcal{H})$ (the full tensor algebra over \mathcal{H}), uniquely determined by $\lambda_0(a_i)(e_{i_1}\otimes\cdots\otimes e_{i_n})=e_i\otimes$ $e_{i_1} \otimes \cdots \otimes e_{i_n}$ and $\lambda_0(a_i^*)(1) = 0$ via the defining commutation relations of $\mathcal{W}(T)$, is a *-representation with respect to a unique Hermitian sesquilinear form $\langle \cdot, \cdot \rangle_0$, called the Fock inner product, on $\mathcal{T}(\mathcal{H})$. A two-sided ideal \mathcal{J} of $\mathcal{T}(\mathcal{H}) \subset \mathcal{W}(T)$ is called a Wick ideal if $\mathcal{T}(\mathcal{H}^*) \otimes$ $\mathcal{J} \subset \mathcal{J} \otimes \mathcal{T}(\mathcal{H}^*)$ in $\mathcal{W}(T)$. In this paper, it is proved that if $||T|| \leq 1$ for $T: \mathcal{H} \otimes \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$ satisfying the braid condition $T_1 T_2 T_1 = T_2 T_1 T_2$ for $T_1 = T \otimes id_{\mathcal{H}}$ and $T_2 = id_{\mathcal{H}} \otimes T$ on $\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}$, then the kernel of the Fock inner product $\left\langle \cdot,\cdot\right\rangle _{0}$ is the largest quadratic Wick ideal of $\mathcal{T}(\mathcal{H})$. It is also shown that for $-1 < T \leq 1$, the algebra $\mathcal{W}(T)$ has no nontrivial Wick ideals, which implies that the Fock representation λ_0 is faithful, and furthermore a known result is obtained as a corollary, namely, for $-1 < T \leq 1$, the Fock inner product $\langle \cdot, \cdot \rangle_0$ is strictly Albert Jeu-Liang Sheu (1-KS) positive-definite.