Wavelets Through A Looking Glass: The World of the Spectrum
Ola Bratteli and Palle Jorgensen

This book combining wavelets and the world of the spectrum focuses on recent developments in wavelet theory, emphasizing fundamental and relatively timeless techniques that have a geometric and spectral-theoretic flavor. The exposition is clearly motivated and unfolds systematically, aided by numerous graphics.

Key features of the book:
• The important role of the spectrum of a transfer operator is studied
• Excellent graphics show how wavelets depend on the spectra of the transfer operators
• Key topics of wavelet theory are examined: connected components in the variety of wavelets, the geometry of winding numbers, the Galerkin projection method, classical functions of Weierstrass and Hurwitz and their role in describing the eigenvalue-spectrum of the transfer operator, isospectral families of wavelets, spectral radius formulas for the transfer operator, Perron-Frobenius theory, and quadrature mirror filters
• New, previously unpublished results appear on the homotopy of multiresolutions, approximation theory, and the spectrum and structure of the fixed points of the associated transfer and subdivision operators
• Concise background material for each chapter, open problems, exercises, bibliography, and comprehensive index make this a fine pedagogical and reference resource.

This self-contained book deals with the tools for important applications to signal processing, communications engineering, computer graphics algorithms, qubit algorithms and chaos theory, and is aimed at a broad readership of graduate students, practitioners, and researchers in applied mathematics and engineering. The book is also useful for other mathematicians with an interest in the interface between mathematics and communication theory.
Applied and Numerical Harmonic Analysis

Series Editor
John J. Benedetto
University of Maryland

Editorial Advisory Board

Akram Aldroubi
NIH, Biomedical Engineering/Instrumentation

Ingrid Daubechies
Princeton University

Christopher Heil
Georgia Institute of Technology

James McClellan
Georgia Institute of Technology

Michael Unser
NIH, Biomedical Engineering/Instrumentation

M. Victor Wickerhauser
Washington University

Douglas Cochran
Arizona State University

Hans G. Feichtinger
University of Vienna

Murat Kunt
Swiss Federal Institute of Technology, Lausanne

Wim Sweldens
Lucent Technologies

Martin Vetterli
Swiss Federal Institute of Technology, Lausanne
Ola Bratteli
Palle Jorgensen

Wavelets Through a Looking Glass
The World of the Spectrum

with 147 illustrations by Brian Treadway

Birkhäuser
Boston • Basel • Berlin
Dedicated to the memory of an imaginary friend
Contents

Preface xi

List of Figures xvii

List of Tables xxi

1 Introduction 1
 Overture: Why wavelets? .. 1
 1.1 Subband filters and sieves 12
 1.2 Matrix functions and multiresolutions 16
 1.3 Qubits: The oracle of Feynman and the algorithm of Shor 25
 1.4 Chaos and cascade approximation 38
 1.5 Spectral bounds for the transfer and subdivision operators .. 39
 1.6 Connections to group theory 42
 1.7 Wavelet packets .. 44
 1.8 The Gabor transform ... 46
 Exercises .. 47
 Terminology .. 73

2 Homotopy theory and cascades 79
 The dangers of navigating the landscape of wavelets 79
 2.1 Homotopy classes of wavelets 82
 2.2 Multiresolution analysis and tight frames 91
 2.3 Generality of multiresolution analysis 103
 2.4 Global homotopy and an index theorem 106
x Contents

2.5 Cascades in $L^2(\mathbb{R})$.. 121
2.6 An open problem ... 134
Exercises .. 135

3 Can you hear the shape of a wavelet? 147
The world of the spectrum 147
3.1 Transfer operators ... 152
3.2 Galerkin projections and spectra of transfer operators 156
3.3 Spectrum and regularity 165
3.4 The spectra of restrictions of the transfer operator 184
3.5 The spectral radius ... 193
Exercises .. 199

4 The transfer operator and Perron–Frobenius theory 203
A slanted matrix from dynamics 203
4.1 The duality between kneading and chopping 205
4.2 A Green’s function .. 214
4.3 The Perron–Frobenius eigenfunction 235
4.4 Approximation theory 242
4.5 Ergodic means ... 253
Exercises .. 260

5 The fixed points of the transfer operator 265
The fine structure of correlations 265
5.1 The minimal function g such that $R(g) = g$, $0 \leq g \leq 1$, and $g(1) = 1$. 267
5.2 The C^\ast-algebra $\ker (1 - R|_{C^\ast(\mathbb{N})})$: Estimates and identities 278
5.3 Inverse spectral theory 292
5.4 Cycles .. 298
5.5 Pure states ... 310
5.6 Historical notes and remarks 318
Exercises .. 319

6 Orthogonalization and isospectral approximation 325
The other side of wavelets 325
6.1 Examples .. 328
6.2 Spectral properties of biorthogonal wavelets 336
6.3 Isospectral approximation 347
6.4 Biorthogonal frames: Multiresolution analysis and index theorem . . . 358
Exercises .. 363

References .. 369

Index .. 387
Preface

Advances in communication, sensing, and computational power have led to an explosion of data. The size and varied formats for these datasets challenge existing techniques for transmission, storage, querying, display, and numerical manipulation. This leads to the paradoxical situation where experiments or numerical computations produce rich, detailed information, for which, at this point, no adequate analysis tools exist. —Conference announcement, Joint IDR–IMA Workshop on Ideal Data Representation, Minneapolis, R. DeVore and A. Ron, organizers

Wavelet theory stands on the interface between signal processing and harmonic analysis, the mathematical tools involved in digitizing continuous data with a view to storage, and the synthesis process, recreating, for example, a picture or time signal from stored data. The algorithms involved go under the name of filter banks, and their spectacular efficiency derives in part from the use of hidden self-similarity, relative to some scaling operation, in the data being analyzed. Observations or time signals are functions, and classes of functions make up linear spaces. Numerical correlations add structure to the spaces at hand, Hilbert spaces. There are operators in the spaces deriving from the discrete data and others from the spaces of continuous signals. The first type are good for computations, while the second reflect the real world. The operators between the two are the focus of the present monograph. Relations between operations in the discrete
and continuous domains are studied as symbols. The mathematics involved in assigning operators to the symbolic relations is developed as a representation theory. The presentation is self-contained, and may serve as an introduction for readers who encounter these ideas for the first time and who would like to learn them from scratch.

A main point is the study of intertwining operators between, on the one side, the discrete world of high-pass/low-pass filters of signal processing, and on the other side, the continuous world of wavelets. There are significant issues in operator algebra and representation theory on both sides of the divide, and the intertwining operators shed light on central issues for wavelets in higher dimensions. Tools from diverse areas of analysis, as well as from dynamical systems and operator algebra, merge into the wavelet analysis. The diversity of techniques also adds to the charm of the subject, which continues to generate new mathematics.

The purpose of this book is twofold: first, to give a general presentation of some recent developments in wavelet theory, with an emphasis on techniques that are both fundamental and relatively timeless, and that have a geometric and spectral-theoretic flavor. It is our hope that it can be used equally well as a text for graduate students, as a reference book for specialists and researchers in neighboring fields, and in applications. Secondly, we are presenting some new results for the first time that have not previously appeared in papers, for example on the homotopy of multiresolutions, on approximation theory, and on the spectrum of associated transfer and subdivision operators. The backdrop to our book is Daubechies’s classic [Dau92], but we also wish to stress the influence of a crucial paper of P. Auscher [Aus95] that solved two basic questions in wavelet theory, and that motivated the direction the subject has taken since then. The first question attacked in [Aus95] is about the limitations of the multiresolution method for wavelets: What are the wavelets that do not directly derive from a scaling function, or from some resolution subspace? The second question concerns localization in the dual variable, i.e., the frequency variable ω of the Fourier transform $\hat{\psi}(\omega)$ when ψ is given to be a wavelet function: Could $\hat{\psi}(\cdot)$ be supported in a half-line, $0 \leq \omega < \infty$? The answer turns out to be “no” unless $\hat{\psi}$ is a rather singular function. In summary, both questions are about frequency localization of wavelets, and our understanding of the tradeoffs between regularity and stability. Both questions are spectral-theoretic.

The interdependence among the chapters in this book can roughly be summarized as follows.

```
1 ----> 2 ----> 6
  |        |
  3 -----> 4 ----> 5
```

While this diagram does not exhaust all the interconnections among the chapters and the topics of the book, we hope it will assist instructors (and students) who might perhaps only need some, but not all, of the chapters in a semester-long course: An applied course
that stresses wavelets and some of their applications could be based on the first row
1 → 2 → 6, while the variants of the second row could be used alternatively in
a course more focused toward operator theory. The tutorials at the start of each chapter
supply further guides to interconnections of topics, and cross-fertilization among the vari-
ous ideas and techniques that make up the book. Section 3.3 and the tutorial of Chapter 3
are somewhat independent of the other material in the lower row, and could beneficially
be read in conjunction with Section 1.2 instead. In Section 2.5 we use some results from
Sections 3.4, 4.3, and 4.4, but we do not otherwise need techniques from these sections
here. Sections 1.3 and 1.4 are logically independent from the rest and may be omitted at
the first reading. Likewise the results on homotopy of wavelets in Sections 2.1 and 2.4
may be omitted at the first reading except for the sequence (2.1.11)–(2.1.28) that is basic
for Section 2.2. So in principle Chapters 3–5 (except Section 3.3) could be read as an
introduction to transfer operators and their dual subdivision operators, independently of
the wavelet applications of these results. Chapters 1–2 (with Section 3.3 added) could be
read as an introduction to multiresolution wavelet theory.

Each chapter, and some sections within chapters, open with tutorials or primers of
varying length. Written with minimal use of symbols and formulas, they serve both as
summaries of some main ideas worked out in full detail inside the chapter (or section)
in question, and also as guided tours through the background material, and especially
as motivation. The tutorials are written in a style that is much more informal than that
of the book proper, and this is intentional. They are in fact meant as friendly invita-
tions to the topics to follow, with the emphasis on friendliness, even at the cost of occa-
sional oversimplifications. The conclusions of tutorials and epigraphs are marked with
“dingbats,” typographic ornaments depicting scaling and wavelet functions. See Exam-
ple 2.5.3 within for a discussion of how these depictions are generated. The ones used as
dingbats are computed at the eighth cascade level. Brian Treadway is making available,
on the authors’ web sites (see note on next page), a sequence of such graphical depic-
tions arranged to show how variations in the masking coefficients propagate and create a
continuous moving picture in the variation of the scaling/wavelet functions, illustrating
the algorithm in Chapter 1, (1.2.9)–(1.2.10), and a theorem in Chapter 2, Theorem 2.5.8.

Each chapter concludes with exercises. Most of them can readily be assigned as home-
work by an instructor teaching from the book, but a few exercises are more challenging,
and they are marked with a star. Others will require the student to check journal articles,
and do some research. They are marked with two stars. You will notice that Chapter 1
concludes with a relatively larger number of exercises than do the other chapters: Chap-
ter 1 is where many basic concepts are first introduced. It is where the terminology for
the rest of the book is discussed, and a number of the exercises are meant to help the
student acquire a working familiarity with new terms and standard definitions. This is
also why Chapter 1 concludes with a list of terminology. It turns out that some words are
used differently by mathematicians, engineers, physicists, and computer scientists, and
the list may perhaps serve as a dictionary. In fact, you might find it useful to consult this list right from the start, or the first time you come across a concept that you wish to have expounded.

You are invited to visit the World Wide Web pages of the authors for updates and corrections to the book, for example concerning the open problem in Section 2.6.

A relatively moderate-sized book like this must of necessity omit many topics that are nonetheless both important and exciting. A list of exciting wavelet developments in the 1990s includes wavelet packets [CMW95, CoWi93], ridgelets and curvelets [CaDo00], the method of successive liftings for the discrete wavelet transform algorithm [DaSw98], [JelC01], applications to medicine and biology [AlUn96], and quantum computing wavelet programs [Kla99], [FiWi99], [Fre00]. While these are mentioned, or touched upon, inside the present book, they are treated only peripherally, as they branch off from the central theme of our book, and space is limited. Readers who may wish to look at the more advanced details of the exciting topics in the IMA workshop mentioned in the header of our Preface can consult the book [DLLP01]. It covers applications to three-dimensional computer graphics of the cascading refinement algorithm, and nonlinear wavelet approximations, among a list of current topics on the frontier of applied wavelet theory.

The second named author (P.J.) thanks the Mathematics Institute of Oslo University for kind hospitality, and for support during a visit when the research was done. We also thank Brian Treadway for expert typesetting, graphics production, artistic and algorithmic creativity, corrections, Mathematica work, helpful suggestions, and arbitration of disputes between the two authors. Among other things, Section 3.3 is almost entirely due to him. For mathematical help, we gratefully acknowledge kind suggestions from Erik Alfsen, Bill Arveson, Bachir Bekka (who provided the information in Section 1.8), David E. Evans, Peter Høyer, Gerald Kaiser, Andreas Klappenecker, David Kribs, David Larson, Roger D. Nussbaum, William L. Paschke, Jean Renault, Gilbert Strang, Brian Treadway, and Radka Turcajová. P.J. also acknowledges support from the Institute for Mathematics and its Applications in connection with the NSF-funded workshop in March 2001 mentioned above. P.J. had many discussions about the research of the present monograph with the other members of the workshop. Finally, we thank Gerald Kaiser for kindly letting us quote the paragraph which opens Section 1.1, from his book [Kai94]. In comparing our book with his, and others from that time, we note that the use of algorithms now has a more dominant role in wavelet analysis, a fact that is also reflected here. We are pleased to thank Ann Kostant for her encouragement from the outset, and her professional editorial advice and kind help during the final stages of the

†There are two lists of web addresses of researchers in wavelets and related fields that the reader may find useful: http://www.cs.wisc.edu/~amos/atpeople.html and http://www.cs.tamu.edu/faculty/klappi/people.html. A rich source of information on the latest developments in wavelet theory may be found in http://www.wavelet.org/wavelet/index.html.
preparation of this book. The editors John Benedetto and Akram Aldroubi of the ANHA series also have been a constant source of help and encouragement. P.J.’s view of the subject owes much to discussions he had with John and Akram at several conferences on wavelet analysis (see the text below), and the interaction that results from attending lectures from one or the other of us. We are grateful to reviewers for encouragement and detailed suggestions: they include A. Aldroubi, G. Strang, and J. Benedetto. We also benefited from a detailed list of helpful and constructive suggestions from an anonymous referee.

The material and the texture of this book grew out of recent developments in wavelet theory since the publication of [Dau92], and out of courses taught at the University of Iowa over six years. The latter include both advanced undergraduate courses and more specialized graduate courses. In addition, the authors have lectured at many universities in the U.S., Europe, and Asia on wavelets, for example, Georgia Institute of Technology (Atlanta), Louisiana State University, Wright State University (Ohio), Texas A & M University, University of Iowa, Vanderbilt University (Tennessee), University of Cincinnati (Ohio), University of Oslo (Norway), University of Aarhus (Denmark), University of Copenhagen (Denmark), University of Wales (U.K.), Imperial College (London), University of Rome I (Italy), Mathematisches Forschungsinstitut Oberwolfach (Germany), Universitatea Ovidius Constanta (Romania), Chinese University of Hong Kong, Hong Kong City University, Zhongshan University (Guangzhou, China), University of Shanghai (China), Australian National University, University of Newcastle (Australia), National University of Singapore, University of Toronto, and University of Waterloo (Canada). We are extremely grateful to the hosts at these universities, and to the students attending the lectures for the feedback they gave on some of the material going into the book. We wish to thank our hosts, Yang Wang, Chris Heil, and Jeff Geronimo (Georgia Tech.), Gestur Ólafsson (LSU), Steen Pedersen (Wright State U.), Dave Larson (Texas A & M), Akram Aldroubi, Doug Hardin, and Daoxing Xia (Vanderbilt U.), Klaus Thomsen (U. of Aarhus), David Evans (Cardiff University), Ka-Sing Lau (CUHK, Hong Kong), Judy Packer, Zuowei Shen, and S.L. Lee (Singapore), Derek Robinson (ANU, Australia), Ken Davidson (U. of Waterloo), and G.A. Elliott (U. of Toronto).

Financial support for our work has come from the Institute of Mathematics of the University of Oslo, Norway, the Norwegian Academy of Arts and Sciences through the Centre for Advanced Study, and from the U.S. National Science Foundation.

Oslo and Iowa City, May 2002
Ola Bratteli and Palle E. T. Jorgensen

2000 Mathematics Subject Classification: Primary 42C40, 46L60, 47L30, 42A16, 43A65; Secondary 46L45, 42A65, 41A15

Key words and phrases: wavelets, cascade approximation, cycle, homotopy, cascade algorithm, transfer operator, Ruelle operator, orthogonal expansion, quadrature mirror filter, isometry in Hilbert space, C*-algebra
List of Figures

Chapter 1

1.1 Chaos. Wavelets around $\theta = \rho = 0$ 18
1.2 Wavelets around $\theta = 0, \rho = \pi/2$ 19
1.3 Absence of chaos. Wavelets around $\theta = \pi/4, \rho = 0$ 20
1.4 Wavelets around $\theta = \rho = \pi/4$ 21
1.5 Wavelets around $\theta = \pi/2, \rho = 0$ 22
1.6 Chaos. Wavelets around $\theta = \rho = \pi/2$ 23
1.7 Wavelets around the ultrasmooth point 24
1.8 Qubits. A two-electron level in an atom (the Rutherford–Bohr model; simplified!) 26
1.9 The Bloch ball of states $\rho(x, y, z) = \frac{1}{2} (\sigma_0 + x \sigma_x + y \sigma_y + z \sigma_z)$ 28
1.10 The quantum gate $\frac{1}{\sqrt{2}} (\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix})$ 28
1.11 Cascading refinements 38
1.12 Polarized photons visualized as light beams 77

Chapter 3

3.1 The continued-fraction map of Gauß, $\sigma_\infty: x \mapsto \frac{1}{2} \mod Z$ 154
3.2 Guide to eigenvalue plots in Figures 3.3–3.12 169
3.3 Second largest eigenvalue of $R_{\mathcal{K}}^{(\theta, \rho)}$: absolute value $|\lambda_2|$ as a function of θ and ρ 170
3.4 Third largest eigenvalue of $R_{\mathcal{K}}^{(\theta, \rho)}$: absolute value $|\lambda_3|$ as a function of θ and ρ 170
3.5 Fourth largest eigenvalue of $R_{K}^{(\theta, \rho)}$: absolute value $|\lambda_4|$ as a function of
θ and ρ ... 171
3.6 Fifth largest eigenvalue of $R_{K}^{(\theta, \rho)}$: absolute value $|\lambda_5|$ as a function of θ
and ρ ... 171
3.7 Sixth largest eigenvalue of $R_{K}^{(\theta, \rho)}$: absolute value $|\lambda_6|$ as a function of θ
and ρ ... 172
3.8 Seventh largest eigenvalue of $R_{K}^{(\theta, \rho)}$: absolute value $|\lambda_7|$ as a function of θ
and ρ ... 172
3.9 Eighth largest eigenvalue of $R_{K}^{(\theta, \rho)}$: absolute value $|\lambda_8|$ as a function of θ
and ρ ... 172
3.10 Ninth largest eigenvalue of $R_{K}^{(\theta, \rho)}$: absolute value $|\lambda_9|$ as a function of θ
and ρ ... 173
3.11 Tenth largest eigenvalue of $R_{K}^{(\theta, \rho)}$: absolute value $|\lambda_{10}|$ as a function of θ
and ρ ... 173
3.12 Eleventh largest (i.e., smallest) eigenvalue of $R_{K}^{(\theta, \rho)}$: absolute value $|\lambda_{11}|$
as a function of θ and ρ .. 174
3.13 Curves $\cos (2\theta) + \cos (2\rho) = a$ along which the variables θ and ρ move
in Figures 3.14–3.24 .. 175
3.14 Absolute values of eigenvalues of $R_{K}^{(\theta, \rho)}$ along the curve
$\cos (2\theta) + \cos (2\rho) = \cos \frac{\pi}{6} + 1 = 1 + \frac{\sqrt{3}}{2}$ 176
3.15 Absolute values of eigenvalues of $R_{K}^{(\theta, \rho)}$ along the curve
$\cos (2\theta) + \cos (2\rho) = \cos \frac{\pi}{3} + 1 = \frac{1}{2}$ 176
3.16 Absolute values of eigenvalues of $R_{K}^{(\theta, \rho)}$ along the curve
$\cos (2\theta) + \cos (2\rho) = \cos \frac{\pi}{2} + 1 = 1$ 177
3.17 Absolute values of eigenvalues of $R_{K}^{(\theta, \rho)}$ along the curve
$\cos (2\theta) + \cos (2\rho) = \cos \frac{2\pi}{3} + 1 = 1 - \frac{\sqrt{3}}{2}$ 177
3.18 Absolute values of eigenvalues of $R_{K}^{(\theta, \rho)}$ along the curve
$\cos (2\theta) + \cos (2\rho) = \cos \frac{2\pi}{6} + 1 = 1 - \frac{\sqrt{3}}{2}$ 178
3.19 Absolute values of eigenvalues of $R_{K}^{(\theta, \rho)}$ along the curve
$\cos (2\theta) + \cos (2\rho) = 0$... 178
3.20 Absolute values of eigenvalues of $R_{K}^{(\theta, \rho)}$ along the curve
$\cos (2\theta) + \cos (2\rho) = \cos \frac{2\pi}{6} + 1 = \frac{\sqrt{3}}{2} - 1$ 179
3.21 Absolute values of eigenvalues of $R_{K}^{(\theta, \rho)}$ along the curve
$\cos (2\theta) + \cos (2\rho) = \cos \frac{2\pi}{3} - 1 = -\frac{1}{2}$ 179
3.22 Absolute values of eigenvalues of $R_{K}^{(\theta, \rho)}$ along the curve
$\cos (2\theta) + \cos (2\rho) = \cos \frac{\pi}{2} - 1 = -1$ 180
3.23 Absolute values of eigenvalues of $R_{K}^{(\theta, \rho)}$ along the curve
$\cos (2\theta) + \cos (2\rho) = \cos \frac{3\pi}{3} - 1 = -\frac{3}{2}$ 180
Chapter 5

5.2 \(\sigma \)

5.2.3 Eigenfunctions of \(R_{k, \rho}^{(0, \rho)} \) along the line

\(\theta = \rho \) from \((0, 0)\) to \((\frac{\pi}{2}, \frac{\pi}{2})\) 181

5.2.4 Eigenfunctions of \(R_{k, \rho}^{(0, \rho)} \) along the line

\(\rho = 0 \) from \((0, 0)\) to \((\frac{\pi}{2}, 0)\) 182

5.2.5 Absolute values of eigenvalues of \(R_{k, \rho}^{(0, \rho)} \) near \((\frac{\pi}{2}, \frac{\pi}{2})\) 183

5.2.6 Eigenfunctions of \(R_{k, \rho}^{(0, \rho)} \) along the line

\(\theta = 0 \) from \((0, 0)\) to \((0, \frac{\pi}{2})\) 183

5.2.7 Eigenfunctions of \(R_{k, \rho}^{(0, \rho)} \) along the line

\(\theta = \frac{\pi}{2} \) from \((\frac{\pi}{2}, 0)\) to \((\frac{\pi}{2}, \frac{\pi}{2})\) 184

5.2.8 Eigenfunction with one jump discontinuity 198

Chapter 4

4.1 The lower block matrix form of the operator \(Q^* \) when \(N = 2 \) and \(D = 3 \) 207

4.2 Three eigenfunctions of \(R \) of the form \(F_\beta (t) \) in (4.2.54): \(\beta = \frac{5}{3}, 2, \frac{7}{3} \), corresponding to \(\lambda \) near 1: \(\lambda = 2^{-1/3}, 1, 2^{1/3} \) 223

4.3 Three eigenfunctions of \(R \) of the form \((\beta - 1) F_\beta (t) \) in (4.2.60): \(\beta = \frac{2}{3}, 1 \) (limit), \(\frac{4}{3} \), corresponding to \(\lambda \) near \(\frac{1}{2} \): \(\lambda = 2^{-4/3}, \frac{1}{2}, 2^{-2/3} \) 225

4.4 Three eigenfunctions of \(R \) of the form \(F_\beta (t) \) in (4.2.54): \(\beta = -\frac{1}{3}, 0, \frac{1}{3} \), corresponding to \(\lambda \) near \(\frac{1}{2} \): \(\lambda = 2^{-7/3}, \frac{1}{2}, 2^{-5/3} \) 226

4.5 Two of the infinite number of eigenfunctions of \(R \) in Scholia 4.2.7 and 4.2.8 corresponding to \(\lambda = \sqrt{2} \) 227

4.6 The spectral function of the Haar scaling function: \(f_{\varphi_p} (e^{it}) \) for \(\varphi_p (x) = \frac{1}{p} \chi_{(0,p)} (x) \), \(p \) odd = 3, 5, 7 247

4.7 The sinusoidal kernel function \(\sum_{k=1}^{p-1} \sin kt \), \(p = 3, 5, 7 \) 253

Chapter 5

5.1 \(W \) (t) as in Example 5.3.2 294

5.2 \(\sigma : z \mapsto z^2 \) or \(t \mapsto 2t \) mod \(2\pi \mathbb{Z} \) 295

5.3 (a) First branch of the inverse, \(\sigma_0 (t) = \frac{1}{2} \); (b) second branch of the inverse, \(\sigma_1 (t) = \frac{t - 2\pi}{2} \) 295

5.4 \(f_3 (t) = R^3 (e_0) (t) = \left(1 - \frac{|t|}{\pi} \right) \left(1 - \frac{|t|}{2\pi} \right) \left(1 - \frac{|t|}{4\pi} \right) \) on a period interval 296
List of Figures

5.5 Illustration of (5.4.29) for \(N = 2 \), \(C = \{ \zeta_7, \zeta_7^2, \zeta_7^4 \} \),
\(D = \{ -\zeta_7, -\zeta_7^2, -\zeta_7^4 \} \) .. 304

5.6 An example of a cycle \(C = \{ \pm \frac{2\pi}{3} \} \) and a function \(W \) satisfying (4.3.1)–
(4.3.4) for \(N = 2 \) .. 316

Chapter 6

6.1 \(g_1 (t) = \cos t + \frac{1}{2} \cos (2t) \) .. 330

6.2 \(g_{-1} (t) = \sin t - \frac{1}{2} \sin (2t) \) .. 330

6.3 Three functions in \(E_1 (R_W) \): \(f_{\varphi_9} (t) \leq f_{\varphi_3} (3t) \leq f (t) \equiv 1 \) 332

6.4 The three minimal idempotents in \(T_1 (C (\mathbb{T})) \) for \(W(z) = 1 + \cos (7t) \) 333

6.5 The three minimal idempotents in \(T_1 (C (\mathbb{T})) \) for \(W(z) = 1 + \cos (9t) \) 334

6.6 Illustration of scaling function for \(m(C) \)

Product of filters → convolution of scaling functions 339

6.7 Matrix for \(R_W|_K \) when \(W \) is given in (6.2.32) 343

6.8 \(W(e^{it}) \) in Example 6.2.2: The zeroes include the points in \(D = \{ \pm \frac{2\pi}{3} \} \) 344

6.9 The Perron–Frobenius eigenfunction \(f(e^{it}) \) in Example 6.2.2: Zeroes
on \(C = \{ \pm \frac{2\pi}{3} \} = -D \) ... 344

6.10 \(Wf(e^{it}) = \frac{2 \cos^4(t/2)(2+\cos t)}{2+\cos(2t)} \) in Example 6.2.2: Fourth-order zero at
\(t = \pm \pi \) (\(z = -1 \)) ... 345

6.11 \(m_0^S (e^{it}) = \sqrt{2} \cos^2 (t/2) \sqrt{\frac{2+\cos t}{2+\cos(2t)}} = \sqrt{Wf} \) in Example 6.2.2: The
orthogonal wavelet filter, i.e., \(|m_0^S(t)|^2 + |m_0^S(t + \pi)|^2 = 2 \), see (6.2.2) 345

6.12 \(\left| \frac{Wf}{(1+z)^2} \right| \), showing global minimum at \(t = \pm \pi \) (\(z = -1 \)) 346
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wavelet resolution algorithms</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>Logic gates</td>
<td>78</td>
</tr>
<tr>
<td>3</td>
<td>$N = 2$: Summary of the convergence of the cascade approximation to the scaling function φ</td>
<td>127</td>
</tr>
<tr>
<td>4</td>
<td>The spectral idempotent $T_1^{(W)}$ of R_W</td>
<td>246</td>
</tr>
<tr>
<td>5</td>
<td>The $(\langle \sigma_i, g_j \rangle)_{i,j=0}^2$ matrix ($p = 9$)</td>
<td>291</td>
</tr>
<tr>
<td>6</td>
<td>Cycles C in $\mathbb{T} \setminus {1}$ under the action $z \mapsto z^N$, for $N = 2$</td>
<td>331</td>
</tr>
</tbody>
</table>