
 22C:050 Solutions for HW#9

2.
Assuming that a sector holds 256 bytes and that each sector can hold 64 disk
addresses, how many bytes could be stored in a file such as is shown in Figure 12.2,
assuming

a) no index sectors?
 256 bytes

b) one index sector?

 384,1664256 =× bytes

c) two levels of index sectors?

 576,048,16464256 =×× bytes

d) three levels of index sectors?

864,108,67646464256 =××× bytes

3.
The classic Unix file system allows only 32 bits (4 bytes) to specify the address of any
sector on disk, and each sector holds 512 bytes. What is the maximum storage
capacity of a single disk device?

 255,5522,199,023,512232 =× bytes

5.
Directories under both the Xerox Pilot system and Unix map textual file names to
numerical names (in Unix, the numerical name is the i-number specifying the i-node
that describes the file). Both systems use a tree structure for efficient access to a
particular sector of a particular open file. How do these systems differ?

 Pilot uses one big search B-tree as an efficient way to access the sectors; while
UNIX uses a separate tree for each file. However, the Pilot system uses additional
fields to store, attached to each sector of the disk, the file number of the file to which
that sector is allocated, and the sector number within that file that the sector represents.
Therefore, the Pilot system has a linear search of the disk that can be used to rebuild
the system once there is corruption, although it is not efficient.

10.
Write code for the "mark" and "seek" services defined in Figure 12.11, using the data
structures shown in Figure 12.9, and taking into account the needs of the code shown
in Figure 12.10.

void mark(struct filevariable * f)
{
 struct diskfilevariable * df = (struct diskfilevariable *) f;

return df->pos;
}

void seek(struct filevariable * f, int i)
{
 struct diskfilevariable * df = (struct diskfilevariable *) f;

 if(i/ df->disk->sectorsize != df->pos/ disk->sectorsize)
 {
 free(df->buf);
 df->buf = NULL;
 }

 df->pos = i;
}

