Hierarchies and Security

Part of 22C:169, Computer Security Notes
by Douglas W. Jones
THE UNIVERSITY OF IOWA Department of Computer Science

Military Secrecy

The steriotypical military security system is arranged as follows:

Unclassified
Documents are considered unclassified if their disclosure would cause no significant damage.

Internal Use Only
Documents are classified as internal use only if their disclosure would be inconvenient.

Confidential
Documents are classified as confidential if their disclosure might cause harm to the organization.

Secret
Documents are classified as secret if their disclosure will cause harm to the organization or could cause catastrophic harm.

Top Secret
Documents are classified as top secret if their disclosure will cause catastrophic harm to the organization.

???t
If there are security classifications above top secret, their existence is classified.

In addition to classifying information, the military security model also attaches a security clearance to each person. The clearances have the same names as the classifications, so a person with a secret clearance is cleared to read documents that are classified as secret, as well as all documents with lower classification levels, as described in the following table.
Unclassified
Documents
Internal
Documents
Confidential
Documents
Secret
Documents
Top Secret
Documents
The Public Read
Employees Read Read
Confidential
Clearance
Read Read Read
Secret
Clearance
Read Read Read Read
Top Secret
Clearance
Read Read Read Read Read

Typically, there are more or less elaborate tests that an employee must pass in order to be cleared for access to information at some level.

The Bell-LaPadula Model

Long after systems such as those described above became common, Bell and LaPadula axiomatized the idea. They augmented the basic notion of hierarchic classification with the rule that any document produced by someone with access to information at some level must be classified at that person's level, so if I have access to Secret documents, then all documents I produce are secret.

With this constraint, it is easy to show that no leaks will occur. Unfortunately, real organizations cannot possibly operate this way. There must be some way for the general to issue commands to the troops in the field. As a result, the Bell Lapadula model includes the concept of trusted subjects, that is, people who are entitled to create documents at lower security levels than their own.

The Bell-Lapadula model has motivated a huge amount of system development, because it so closely captures the kind of security thinking that real organizations accept, but at the same time, has caused many problems. The central problem is that real working systems rarely follow clean hierarchies.

Data Diodes

An example of the kind of thinking that the Bell Lapadula model has motivated is the idea of a data diode. See, for example, Curt A. Nilsen's patented Method for Transferring Data from an Unsecured Computer to a Secured Computer, U.S. Patent 5,703,562, issued Dec. 30, 1997. He called this a data diode because it allows data to flow in one direction and not in the other.

This patent is phrased strictly in terms of the Bell LaPadula hierarchic view, and it is seen as a mechanism to ensure that data flows from unclassified systems to classified systems. Curiously, it may be the case that data diodes have far more applications outside of this hierarchic world.

For example, a data diode can prevent a vulnerable web server from attacking a secure system that provides the data that is supposed to be visible from the web. In this application, the data diode permits data to flow from the secure system to the insecure web server, while blocking all attempts to inject anything from the insecure system to the secure system. We have been working on this application here at the University of Iowa.

References

See RFC3114 by W. Nicolls for a discussion of corporate classification policies, with examples.

See the Law on Classified Information of the Republic of Macedonia for a typical example of how classification policies are implemented in law.

As usual, the Wikipedia is a good source. See: http://en.wikipedia.org/wiki/Bell-LaPadula_model

For data diodes, see US Patent Office search page , but you have to type in the number yourself.

There is a web page on data diodes at the University of Iowa.