
Mar 4, 2005 -- Lecture 19

22C:169
Computer Security
Douglas W. Jones
Department of Computer Science

Examples: Mach

The Mach kernel
Work began, 1985 Carnegie Mellon, moved to OSF 1994.

 Uses conventional MMU
Easily ported to many modern machines

Basis of: OSF/1, NeXTStep, IBM's OS/2, MacOS X, others

Capability list per multithreaded process
Capabilities used for message passing
Capabilities refer to mailboxes

Client-server model of system construction
Send messages to servers
Await replies from servers
Await exception messages

Original Mach kernel is very small
Minimal MMU support

Map-unmap pages in address space
Page fault sends message to server

Almost symmetric message passing
Send message to mailbox via cap
Receive message from mailbox via cap
Messages may contain caps and data
Only one process at a time may receive

Design Goal (and source of trouble)
Object-code compatibility

Mach kernel sits under UNIX layer
Users unaware of presence of Mach

System Call in compatable object code
Typically done by trap mechanism
Trap handler sends exception notice
Exception handler implements API
Exception handler communicates

One system call = 8 context switches!

What the User Wanted

What the user could have had

Assessment of Cost
Part of this cost is unavoidable

cost of compartmentalized OS

Half this cost could be avoided by
abandoning object code compatibility
user code makes direct kernel calls

Compatible cost reduction strategy
move functionality into kernel
merge handler and server functions

Potential loss of security

Problems with Mach
Message overhead

FreeBSD / MacOS X found this too high
Partial abandonment of Microkernel

Integration of programming models
Microkernel has object model
C++, Java, etc have object models

Difficult to make models mesh

The uniform Reference Problem
Reference to an object should be uniform!

local: result=obj.meth(parm);
protected:

send(obj_cap,rep_cap,
meth,parm);

await(rep_cap,result);

Seriously degrades software development
Can use local agents to hide ugliness
Use of local agents adds overhead

The uniform reference problem is old
Unix "Kernel" calls suffer

modern languages want
file f = open(...);
char c = f.get();

Unix gives us
int f = open(...);
char c;
read(f, c, 1);

We hide this behind layers of middleware
The cost of these layers is real

Hierarchic rules in a Capabilty System
Idea: objects labeled with classification

Add support for this to kernel
Orthogonal to capabilities

Worse Idea: security kernel
Distinct from system kernel
Auxiliary code to check all object access
Can work at open time

All IPC paths checked when opened

