
Mar 2, 2005 -- Lecture 18

22C:169
Computer Security
Douglas W. Jones
Department of Computer Science

Examples

The Cambridge CAP System
Wilkes and Needham (project start, 1970; book, 1979)

Microprogrammed CPU
16 data registers, hold only data
16 capability registers, hold only caps
Overly expensive multiply indirect caps

Address space = C-list
Process hierarchy
Parent has capability for C-list of child

No priviliged mode needed

CAP access rights
For data segments

R - read (into data register)
W- write (from data register)
E - execute (into instruction register)

For C-lists
RC - read (into capability register)
WC - write (from capability register)

Cap with W and RC dangerous!

CAP refine operation
C' = refine(C, rights, base, size);
Rights of C' reduced from rights of C

C'.rights is a subset of C.rights

Segment C' is part of segment C
can pass cap for part of a segment

Adds serious complexity to system

Cap enter operation
Applicable to enter capabilities

Distinct type of capability (complexity!)

Enter
Pushes old domain on C-stack

Enter creates new domain from:
Object instance C-list
Actual parameter C-list
Code context C-list

Very Complex Semantics

Added complexity in CAP
Capabilities are revokable

A consequence of multiple indirection

Cap allows seal and unseal operations
Sealed objects are a type of capability

Cap File System support for persistancy
inform versus outform capabilities

CAP evaluation
CAP was successful

As a university-built one-off system
All security goals of system were met

CAP was complex
Capability unit more complex than CPU
Microprogramming is no longer popular

CAP relied on custom hardware, microcode
Can it be done on conventional CPU?
Can it be done in RISC philosophy?

The Mach kernel
Work began, 1985 Carnegie Mellon, moved to OSF 1994.

 Uses conventional MMU
Easily ported to many modern machines

Basis of: OSF/1, NeXTStep, IBM's OS/2, MacOS X, others

Capability list per multithreaded process
Capabilities used for message passing
Capabilities refer to mailboxes

Client-server model of system construction
Send messages to servers
Await replies from servers
Await exception messages

Problems with Mach
Message overhead

FreeBSD / MacOS X found this too high
Partial abandonment of Microkernel

Integration of programming models
Microkernel has object model
C++, Java, etc have object models

Difficult to make models mesh

The uniform Reference Problem
Reference to an object should be uniform!

local: result=obj.meth(parm);
protected:

send(obj_cap,rep_cap,
meth,parm);

await(rep_cap,result);

Seriously degrades software development
Can use local agents to hide ugliness
Use of local agents adds overhead

