
Feb 28, 2005 -- Lecture 17

22C:169
Computer Security
Douglas W. Jones
Department of Computer Science

Trusted Systems

Trusted Systems
Definition:

Foundations for trusted applications

Directions in trusted systems work
Military inspired

Accept classification hierarchy
as a system requirement

Computer science inspired
Draw on data abstraction and
scope rules

These produce different results!

The Military Model, Generalized
Security hierarchy

Unclassified, confidential, secret,
top secret, cosmic, ...

Security taxonomy
All information is compartmentalized
by topic: cryptography, geography ...

Classification of resources:
<rank; compartments>

Clearance of users:
<rank; compartments>

The military access rule
Given user U with

U.clearance

And resource R with
R.classification

U > R (U may access R) if both
U.clearance.rank

> R.class.rank
U.clearance.compartments
⊃ R.class.compartments

In general, in military models
User U may access data D if

U > D

If user U writes D
D.class = <U.class.level,C>
where C ⊂ U.class.compartments

In general, for users U1 and U2
U1 may not speak to U2
if U1.clearance > U2.clearance

A DRACONIAN RULE!

Downward information flow:
A central problem with military models

If only upward flow is permitted
Commander can never issue orders!

In sum
Real systems always violate the model

Confusion of trust and accuracy
Trust (Bell LaPadula):

do you trust user U with this data?
The issue is nondisclosure

Accuracy (Biba):
How accurate is data D?

The issue is data integrity
Hierarchic models apply to both

But, are they the same hierarchy?

System Architecture
How do you build a secure system?

Lessons from history:
Insecure results are the norm
Design by afterthought never works

Security Kernel idea
Kernel holds enforcement mechanisms
Kernel size is minimized
Changes to kernel extremely rare
Applications can trust the kernel

Unix Kernel is a really bad example

The Kernel Domain idea
Kernel places all objects in domains

enforces access rights

Kernel does nothing else
File system is outside kernel
Page fault handlers are outside kernel
Device drivers are outside kernel

To the extent possible

Problems
Computer architectures

input/output unprotected
insufficient flexibility in MMU

Programmers and their traditions
programmers expect kernel rights!

