
Feb 7, 2005 -- Lecture 9

22C:169
Computer Security
Douglas W. Jones
Department of Computer Science

Viruses

Self Reproducing Code
Simple to write in reflexive languages

eg: assembly language
Difficult in compiled languages (eg C)

main(a)
{

a="main(a){a=%c%s%c;printf(a,34,a,34);}";
printf(a,34,a,34);

}

#define q(k)main(){puts(#k"\nq("#k")");}
q(#define q(k)main(){puts(#k"\nq("#k")");})

Self Reproducing Code
Easier to understand in LISP
((lambda (x)
 (list x (list (quote quote) x))
)
 (quote
 (lambda (x)
 (list x (list (quote quote) x))
)))

A Virus is:
A self-reproducing code fragment
That attaches itself to other programs

instead of merely outputting itself

Therefore, it must contain code to
Search out targets
Edit targets

In addition to basic self-reproduction

Successful viruses:
Attach to files likely to be exported

MS-Word documents
Games

Evade notice
No obvious side effects
No heavy disk usage
No huge file-size increment

Antivirus measures
A virus cannot infect a passive document

Think twice before allowing active
content in files that don't need it

A virus must be able to act on other files
If active content is supported,
limit domain of action

Build firewalls around applications
Build embedded language sandbox

Detect viral code
Does P include code that does X

Generally:
Equivalent to Halting Problem

We rely on approximations
Large catalogs of known viruses
Patterns of "dangerous operations"

Either miss some viruses
or prevent some legitimate operation

Worms
John Bruner's Shockwave Rider, 1975
First Implemented, Xerox PARC, 1978

Self reproducing code
Spreads between network hosts
Spread via network links

Requirements
Read from link executes code

Deliberately or not

Deliberate worm
Unix shell script in file f
setenv host `randomhost`
rcp f $(host):f
rsh $(host) f
insert payload here
rm f

How can worms invade?
Error in network interface that allows

injection of code where data intended
Buffer Overflow Attack

Debugging interfaces left in place
Beware: Sensible development tools
can be dangerous in production

Buffer Overflow Vulnerability:

int f(int i)
{

char a[32];
gets(a);
return lookup(a);

}

Buffer Overflow Attack

