
Jan 28, 2005 -- Lecture 5

22C:169 Computer Security Douglas W. Jones Department of Computer Science Stream Cyphers

Pseudo Random Number Generation

Not obviously possible --Computers are deterministic

Properties:

 $S_1 = seed$ (used as cryptographic key) $S_n = f(S_{n-1})$ (must be one to one) $R_n = g(S_n)$ (may be many to one) $S_n = S_{n+p}$ (*p* is a period of *f*)

Seed is mall and portable Stream K is arbitrary length

Linear Congruential PRNG (RANDU)

 $S_n = (k S_{n-1}) \mod (2^{31})$

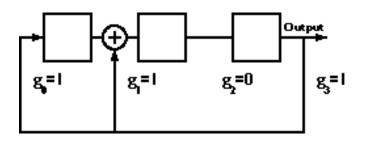
k = 65,539

This horrible PRNG lives on, despite the fact that it is awful, failing many obvious tests for randomness!

Linear Congruential PRNG

 $S_n = (k S_{n-1}) \mod (2^{3^1}-1)$ k = 16,807 or 48,271 or 69,621Period of the Generator

 $S_n = S_{n+2}^{31}$ -2

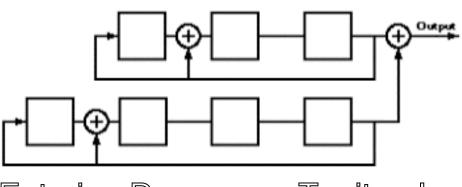

Source

Park and Miller, *CACM*, *31*, 10 (Oct 1988) Random number generators --

Good ones are hard to find

Linear Feedback Shift Registers

Shift register with XORed feedback:


Period, in bits, is 2ⁿ-1 for an n bit register, *but only if the taps are in the right places!*

Sn = if odd(Sn-1) $then (Sn-1 >> 1) \oplus mask$ else Sn-1 >> 1 $Rn = Sn \mod 2$

Combine weak PRNGs to make Strong?

Seed_{combined} = Seed₁ II Seed₂ ?

Weak combining function and *Period*¹ ≠ *Period*²

Entering Dangerous Territory!

Combine weak PRNGs to make Strong?

Seed_{combined} = Seed₁ II Seed₂ ? Selective combining function and $Period_1 = Period_2$ $S_n = \langle S_{1n}, S_{2j}, S_{3k} \rangle$ $S_{n+1} = if even(S_{1n})$ then $\langle S_{1n+1}, S_{2j+1}, S_{3k} \rangle$ else $\langle S_{1n+1}, S_{2j}, S_{3k+1} \rangle$

 $R_n = \text{if even}(S_{1n})$ then S_{2j} else S_{3k} Entering Dangerous Territory!

ISAAC

Indirect, shift, accumulate and count Robert Jenkins, 1996

Seed: 256 integers, 32 bits each Period: 2 8295 Must search 4.67 × 10 1240 initial states for attack (square root of all possible). Marina Pudovkina, 2001 A Known Plaintext Attack on the ISAAC ...

Seeding PRNGs

- I. Use the text of the cryptographic key. keys must be small enough to carry
- II. Seed with a genuine random number. must share number with remote user

III. Use small key to send big random key requires source of real randomness

A Key Exchange Protocol

How to Generate Genuine Randomness:

- I. Radioactive decay or cosmic rays inter-event intervals are exponential
- II. Arrival times of eg: keypresses inter-event has no fixed distribution
- III. Number of lines in system log file ad-hoc, system dependent.

Problem: *How many bits of randomness per second can we get from each source?*

How to combine randomness?

 $B_{1} = random bits from source 1$ $B_{2} = random bits from source 2$ sources must be independent $B_{1} \parallel B_{2} \quad -- \text{ concatenation}$ risks loss of B₁ if mod 2ⁿ $B_{1} \times B_{2} \quad -- \text{ multiplication}$ does not produce prime results

Be Very Careful