The Design and Implementation of a Dynamic Binding
Feature for a High-Level Language |

Rex E. Gantenbein

Department of Computer Science, University of Wyoming

Douglas W. Jones

Department of Computer Science, University of Iowa

Most high-level programming languages are unable to
control the bindings between names and separately com-
plled implementations of those names at run time, while
checking the correctness of such bindings at compile time.
This facility is necessary for the use of the language in a
monolingual  programming environment. This paper de-
scribes the semantics of a dynamic binding feature for a
block-structured, strongly typed language and the incorpo-
ration of the feature into a Pascal implementation. -

1. INTRODUCTION

An area of software engineering receiving increased
attention lately is the programming environment, a
variation on the operating system that is primarily
concerned with the support of high-level program
development. A common thread through much program-
ming environment research is the trend toward *‘mono-
lingual®* environments, in which no system-specific job
control language or shell is needed to provide the
connections between the programs making up a large
application. Heering and Klint [1] show that the conver-
gence of programming and control languages depends
on the ability of the unified language to treat (1)
procedures and programs and (2) files and types as
equivalent. Many high-level languages, some of which
are mentioned in Ref. 1, have this ability; however, any
language that is to be used to write a command
interpreter must provide some sort of dynamic binding
facility to link programs together, a trait that is much
less common.

Address correspondence to Rex E. Gantenbein, Department of
Computer Science, University of Wyoming, Box 3682, University
Station, Laramie, WY 82071.

The Journal of Systems and Software 8, 259-273 (1988)
© 1988 Flsevier Science Publishing Co., Inc.

Although most operating systems provide dynamic
linkage services that allow one running program to cause
other programs to be loaded and run, such services are
not usually provided in high-level languages. Instead,
control over binding ‘at execution time usually involves
accessing the binding facilities of the underlying operat-
ing system. The Multics dynamic linker, for example, is
automatically called whenever a program references an
unbound external name; after the linker has bound the
name, the program may call a system service to
terminate the binding so that the next reference to that
name will relink it, possibly to a different object [2]. It
should be noted that system services like this are outside
the semantics of the programming languages involved;
the linkers do not perform type checking, and programs
using these linkers are not portable. ‘

There appears to be no high-level language that
provides dynamic control over bindings between names
declared within a program and objects external to the
program while checking the consistency and correctness
of the bindings. Algol 68 [3] allows strongly typed
dynamic binding within the confines of a single pro-
gram. In this language, it is legal to define procedure
variables, or pointers to procedures; these pointers may
be bound to any compatible procedure (where compati-
bility is determined by the structural equivalence of the
argument list and the result), but no provision is made
for binding a procedure name to an external object.
Mesa {4] allows somewhat more flexibility; here, the
language definition includes separate compilation, with
strong type checking enforced across compilation-unit
boundaries by the Mesa binder. Furthermore, as in
Muttics, the binder can be dynamically invoked to add
new code to a running program. Unfortunately, once a

259

0164-1212/88/$3.50



260

binding has been established, it cannot be safely broken.
As a result, running Mesa systems tend to grow and
must be periodically restarted to prune off unneeded
linkages.

A complete implementation of dynamic binding in a
strongly typed language would involve all the aspects
described above. The language would have to allow
programs to be constructed from separately compiled
pieces, and it would have to include constructs for
dynamically controlling the bindings between internal
names and these external pieces. If the problems
illustrated by Mesa are to be avoided, the language
should provide some method of unbinding or rebinding a
previously bound name. In addition, the data-typing and
data-sharing rules of the language should not depend on
whether program pieces are bound together at compile
time or at run time.

The following program fragment illustrates how a
dynamic binding mechanism can provide a monolingual
programming environment:

program Shell (...);
typea = ...;

var b: a;
FileName: string;

procedure c (var b: a) ; dynamic;
begin
repeat

lmk ‘c’ to EileName;
c(b);
until ...;
end (* Shell *).

This example is written in a version of Pascal extended
‘to support dynamic binding. The program repeatedly
binds the dynamically bindable procedure ¢ to imple-
mentations stored in object files named by successive
values of the string variable FileName. As such, Shell
serves as a control program to mediate the communica-
tion between the procedure (program) implementations
linked to the name *‘c”’; since these can be written in the
same language as the control program, this is a
monolingual environment. Furthermore, the global vari-
able b has a lifetime determined by the lifetime of Shell
and not by the duration of a call to ¢ or the lifetimes of
the object files containing implementations of c. In this
way, dynamic binding can achieve a form of control
over persistent data (data that outlive the program that
creates them), which has been shown to be one way of
implementing typed files [5]. There is nothing to prevent
. the recompilation or replacement of implementations of

R. E. Gantenbein and D. W. Jones

¢ between calls, and given an appropriate checkpointing
mechanism, Shell can run forever.

2. SEMANTICS OF DYNAMIC BINDING

The process of designing a programming language is not
well understood; furthermore, the evaluation of various
design approaches is far beyond the scope of this paper.
However, it has been succinctly noted by Hoare [6] that
the design of a language feature is innovation, while the
design of a language is consolidation of the best features
in existence. Following this paradigm led us to view
dynamic binding as a feature with which to extend
existing languages rather than as the basis for an entirely
new language. We did, however, try to avoid letting the
choice of a particular base language influence the design
of our feature by first considering several alternatives
for the various aspects of the feature independently of
implementation issues. This approach follows a lan-
guage design methodology developed by Marlin [7] that
has been successfully used in other design projects.

It became clear early in the design process that certain
general decisions had to be made before attention could
be paid to more detailed decisions. In particular, the
design was guided from the outset by a desire to work
within a strongly typed, block-structured, high-level
language, so that advantage could be taken of the
structuring and static correctness-checking facilities in
such languages. Separate compilation was also seen
necessary to support the redefinition and rebinding of
names during the course of a program’s execution. Once
these decisions had been made, the design could
progress to the consideration of alternatives for the
distinct aspects of dynamic binding.

The operations involved in dynamic binding can be
summarized with respect to compile-time and run-time
issues as follows:

Compile time.

Establish the environment for compilation.

2. Compile the program that declares the name, and
compile the object.

3. Check the correctness of the compilation with respect

to the compilation environment. -

—

Run time.

1. Determine the safety and consistency constraints on

the binding specification.

Locate the object in compiled form.

. Add the binding between the name and the object to
the run-time environment.

w N

These issues are independent in the sense that there are



Design and Implementation of Dynamic Binding

many different ways of approaching each issue, and the
particular approach taken in dealing with one issue has
little effect on the approaches that may be used to deal
with the others. Furthermore, they are independent of
the other semantics of the language and can be consid-
ered without choosing a specific base language. The
advantage of this approach is that it avoids the distrac-
tions found in designing a complete language and
concentrates on the problems associated with the new
feature.

Each of the above issues is related to one (and only
one) of three identifiable aspects of dynamic binding.
Establishing an environment and binding an object to a
name are part of the binding mechanism; compiling
programs in separate parts and locating the compiled
objects at run time require the use of inferfaces; while
type checking by the compiler and safety checks by the
run-time system are both part of safety and correct-
ness. There are several alternatives for the semantics of
each of these aspects; the following discussion addresses
some possible choices for each area.

The compile-time semantics of a dynamic binding
mechanism primarily describe what things can be
dynamically bound or rebound. A natural way to answer
the question of what constructs should be bindable with
this mechanism is to list all the kinds of things that have
names and determine which of them should be bindable.
Procedures, functions, and abstract data type implemen-
tations are ali reasonable candidates, since each is a
natural unit of separate compilation. Simple variables
may be viewed as dynamically bindable constants, and
pointer variables may be viewed as dynamically binda-
ble variables. Languages with label or type variables
may be considered to support dynamic binding of labels
and types. Type names, however, probably should not
be dynamically bindable, as the strong typing we have
assumed would be either easily violated or expensively

At the heart of any dynamic binding mechanism, there
must be a loader to include separately compiled material
in the address space of the running program, as well as a
linkage mechanism to connect dynamically bindable
names with newly loaded objects. If this linkage is made
through an indirect link, as in the Multics ‘‘combined
linkage region,”” dynamic bindings are easily changed.
If the linkage is made by modifying the address fields of
each instruction that references the dynamically bound
object, bindings are harder to change. If user programs
may obtain and store actual code addresses in user-
managed data structures, bindings are almost impossible
to change. If the indirect links are stored in activation
records, many bindings of a name may coexist (perhaps
as many as there are activations of the declaring block).
Of course, multiple bindings can coexist only if the

261

loader is able to load different bindings of a name into
different memory locations.

The combination of block structure with separate
compilation in our as-yet-unspecified base ‘language
provides a simple abstraction mechanism. However, to
make such abstraction useful, there must be an interface
between the use and the implementation of ah abstrac-
tion. This interface serves both as a uniform reference to
an object, regardless of the different representations the
object may take, and as a specification of the object by
which the correctness of the binding can be checked.
The interface is thus the means by which the using
program’s independence from differences in representa-
tions for an object can be preserved [8]. :

Interfaces between program units can be maintained
as entities separate from programs, as is done in Mesa
[9] and Modula-2 [10]. This approach provides an
explicit interface that permits both uses and implementa-
tions to be written and compiled in any order and allows
the revision of one unit without requiring revision or
recompilation of the other. However, the use of explicit
interfaces is frequently complex, often involving li-
braries as in CLU [11]. Interfaces can also be defined
within the text of the using program as definition stubs
for code segments whose compilation can be deferred.
This approach is used, in slightly different ways, in both
the Modcap language [12] and the UW-Pascal system
[13]; generally, the approach is simpler to implement
than the explicit approach, although it is less flexible.
(Note: Ada includes both explicit and implicit interfaces
in its package and is separate constructs, respectively
(14].)

In a dynamic binding system, the run-time interface is
taken to mean a mechanism for locating a separately
compiled implementation from within an executing
program. Locating an object to be bound on most
computers undoubtedly means locating an object-code
file produced by the compiler; thus, the locating scheme ~
must involve searching the file system directory struc-
ture for a file name specified by the linkage instruction,
most probably as a string. This string can represent, in
its simplest form, the complete (relative to the directory
structure) name of the implementation file. In another
approach, the name of the identifier to be dynamically
bound could be used as a file name, as is done in
Multics. In either case, the file must be located in some
directory that can be searched via the file systeni.

Compile-time correctness checking of dynamic bind-
ings consists primarily of checking that all implementa-
tions written for a particular name satisfy the specifica-
tion given by the interface. This sort of checking is
usually done as a matter of course in languages with
explicit separate compilation like Modula-2; however,
we must also be concerned with the issue of recompila-



262

tion of separate units when the interfaces in which they
are involved are modified, whether generated explicitly
or implicitly.

Compile-time checking can guarantee the syntactic
correctness and consistency of declaring and implement-
ing units for a dynamically bindable name, but certain
errors can be detected only at run time, especially in
languages where names can be dynamically rebound
after one binding has already been established. Brosgol
{15] defines two such problems: that of converting
instantiations from one form to another when rebinding
occurs, and that of type identity when multiple bindings
are allowed to coexist and interact. The DMERT
operating system developed by Bell Laboratories [16]
solves the problem of dynamically replacing individual
procedures very simply: No binding may be changed
except when all instances have been deleted. This is
described as the *‘clear stack’’ condition, and it is up to
the programmer to indicate when this condition is true in
a program. More complex solutions may involve canoni-
cal forms for instantiations so that conversion is possi-
ble. An intermediately complex solution involves disal-
lowing the rebinding of names when any instances of
that name exist; although some run-time checking will
undoubtedly be required, compile-time checking may be
able to partially support such a solution.

3. AN EXPERIMENTAL IMPLEMENTATION

In order to more fully explore the semantic issues
involved in dynamic binding, a programming language
incorporating the feature was implemented. Pascal was
selected as the base language for this experiment because
it is well known and because easily modified partial
implementations such as Pascal-P [17] are available.
This particular implementation compiles Pascal code
into intermediate or *‘P-"’ code, which is then assembled
and executed by a separate interpreter. Both the com-
piler and interpreter are themselves written in Pascal, a
factor that greatly influenced their use in this experi-
ment. The resultant language, db-Pascal, was imple-
mented by modifying the Pascal-P compiler to support
separate compilation, a linking instruction, and compile-
time safety checks, and by modifying the P-code
interpreter to include loading, linking, and run-time
safety checking. Separately compiled object modules are
stored as P-code files.

The discussion that follows illustrates the choices
made in implementing db-Pascal from among the seman-
tic alternatives previously mentioned and presents the
rationale behind these choices. A brief description of the
language system and an example of a db-Pascal program
can be found in the appendix. Further details can be
found in Ref. 18.

R. E. Gantenbein and D. W. Jones

Of the named objects supported by Pascal, procedures
and functions are the obvious candidates for dynamic
binding. An important question is: Do results obtained
for procedures in Pascal apply to abstract data type
implementations such as those provided by Ada pack-
ages or Modula-2 modules? Linden [19] argues that
procedures and modules are equivalent, while Jones [20]
claims that modular and object-oriented encapsulation
mechanisms provide equivalent support for abstract data
type implementations. Intuitively, this equivalence can
be seen by noting that the operations on an abstract data
type may all be formulated as procedures and that
rebinding the implementation of ar abstract data type is
equivalent to rebinding all of the procedures (including
those that allocate space for instances of the type).

The mechanisms already in Pascal for forward
procedure declarations provided useful direction for the
introduction of separate compilation into the language.
The Pascal forward directive allows the compiler to
check the correctness of code that calls a procedure or
function before the compiler has encountered the proce-
dure or function body. Dynamically linked procedures
can use the same facility, although an additional mecha-
nism is needed to allow the compiler to check that the
separately compiled body conforms to the definition
used by the calling program.

The *‘compiler suspension’’ model of separate compi-
lation used in Ref. 13 is also used here. In this model,
the (abstract) compiler saves the known environment
(i.e., all known names and their associated attributes)
whenever it encounters a stub defining a separately
compiled object. Compilation of the declaring segment
continues until complete, possibly saving many different
environments in the meantime; in effect, the compiler is
“suspended’’ at the point of definition of the stub and
must be “‘resumed’’ (that is, the environment restored
and compilation restarted) to compile the implementa-
tion of the stub. The result is that the semantics of the
separately compiled object are the same as they would
have been had the text of the object been inserted
immediately after the stub. Thus, stubs may appear at
any nesting level.

In order to implement separate compilation and
dynamic binding together, a new compiler directive,
dynamic, was added to the Pascal-P language. When the
compiler encounters this directive, it dumps its symbol
table into a file with the same name as the stub in a
directory associated with the one containing the source
file (usually a subdirectory). This symbol table contains
definitions of all label, type, variable, procedure, and
function names that are accessible from within imple-
mentations bound to the stub as well as the formal
parameter list of the stub. Each compilation unit begins
with an ‘‘environment heading’’ indicating the stub for



Design and Implementation of Dynamic Binding

which a body is being compiled. When the compiler
encounters this header, it initializes its symbol table
from the associated file. The standard Pascal program
heading can be viewed as an environment heading for
the stub of the system command language interpreter.
A new simple statement, l/ink, provides program
control over the bindings between internal procedure
stubs and external procedure bodies. This statement
specifies the name for the procedure and the access path
to the file containing the object code for the procedure
body. The access path to the object file is assumed to
start in the diréctory in which the source code of the

263

declaring program is located. The compiler stores the
access path as part of the compiled P-code for the link
statement; the use of the path name thus eliminates the
need for a run-time search of directories, but it requires
a hierarchical file system organization. ’

The extensions of Pascal-P that characterize db-Pascal
are summarized in the syntax specifications below.
Symbols not in the original grammar are underscored.
The notation is that of the IEEE Pascal Standards
Committee [21), whose notion of ‘‘extension’’ is also
used here. Note that “‘program’’ is no longer the start
symbol of the grammar.

compilation-unit = program | external-procedure
external-procedure = environment-heading “*.”
procedure-identification *‘;”’
procedure-block ““.”’.
environment-heading = ( ‘‘environment dynamic”’ |
‘‘environment separate’’)

file-name.
file-name = { directory-identifier *‘/*’ } file-identifier.
directory-identifier = identifier.
file-identifier = identifier.

simple-statement = empty-statement |
assignment-statement |
procedure-statement |
goto-statement |
link-statement.

link-statement = “‘link”’ procedure-name-string “‘to”’
procedure-body-string.

procedure-name-string = ‘‘ * ** procedure-identifier < * **.
procedure-body-string = “‘ ¢ ** file-name ¢ * **,

In this specification, the directive dynamic is not
explicitly included, in accordance with the standard,
which does not specify directives except to say that
Jorward is required by all implementations.

At run time, execution of the /ink statement initiates
the dynamic linkage mechanism. The P-code interpreter
assembles the indicated object file (located via the path
name in the compiled form of the statement) and loads it
into an unused code segment in its internal code array.
The current implementation permits only one implemen-
tation of a given procedure to exist at any time, sO
relinking a previously linked name can reuse the space
allocated to the previous implementation in the code
array. A global indirect link suffices to transfer control
to dynamically linked routines.

The only threat to consistency in db-Pascal involves

attempts to rebind a procedure that is active. The
decision to allow only one implementation of a given
stub to exist at any time is the root cause of this problem;
if a procedure were to rebind itself or call another
procedure that rebinds it, chaos would result. The db-
Pascal compiler contains static checks to prevent any
procedure from rebinding itself or any statically enclos-
ing procedure. The db-Pascal P-code interpreter main-
tains, with each indirect link to a dynamically bound
routine, a count of the number of activation records
currently in existence for that routine; any attempt to
rebind a routine with a nonzero count will cause a fatal
run-time error,

The implementation of the db-Pascal system was
carried out on a VAX 11/780 computer running Berke-
ley 4.2 UNIX during the summer of 1985. The



264

introduction of separate compilation into the compiler
required approximately 2 weeks of work. Another 4
wecks was spent implementing the dynamic binding
mechanism in the interpreter and adding the associated
changes for static safety checking in the compiler. The
new implementation is neither complete nor efficient,
but it demonstrates the relative ease with which dynamic
binding can be added to an existing language.

4. CONCLUSION

Although the implementation of db-Pascal presented in
this paper only allows the dynamic binding of proce-
dures, it does indicate the feasibility of extending
strongly typed, block-structured languages with dy-
namic binding. The system, as currently implemented,
allows programs like those discussed at the beginning of
the paper to be written,; if the language had a checkpoint-
ing mechanism as well, it would allow *‘persistent
programming’’ as described by Atkinson and Morrison
{22]). Implementing a complete monolingual program-

ming environment would also require an exception-
handling mechanism like that proposed for Pascal {23]
so execution errors would not cause exits from the
environment. This mechanism can easily be imple-
mented using nonlocal gotos, which unfortunately are
not implemented in the Pascal-P compiler from which
the system was built. Also required would be a global
command interpreter (which could be written in db-
Pascal) under which all user programs, including the
compiler, could run.

Research is under way that will correct some of the
current limitations of db-Pascal and investigate more
applications in which dynamic binding might prove
useful. In particular, the use of dynamic binding to
support fault-tolerant applications, in which code found
to cause errors can be replaced without requiring the
termination of the application program, is being studied.
Part of this research may involve a reimplementation of
the language to compile programs into machine code
rather than P-code in the hopes of increasing their
efficiency. Dynamic binding is also being incorporated
into languages other than Pascal (a version of C has been
implemented), an undertaking that may lead to more
insight into the semantic choices that can (or should) be
made among the alternatives for the feature.

REFERENCES

1. G. Heering and P. Klint, Towards Monolingual Program-
ming Environments, ACM Trans. Program. Lang. Syst.
7(2), 183-213, 1985.

10.
1.
12.
13.

14.

15.

16.

17.

18.

19.

20.

-R. E. Gantenbein and D. W, Jones

. Multics Programmers’ Manual and Reference Guide,

Honeywell Information Systems Document No. AG91,
1975.

. A. van Wijngaarden et al., Revised Report on the

Algorithmic Language Algol 68, Springer-Verlag, New
York, 1976.

. J. G. Mitchell, M. Maybury, and R. Sweet, Mesa-

Reference Manual, Version 5.0, Xerox Corporation,
1979.

. M. P. Atkinson et al., An Approach to Persistent

Programming, Comput. J. 26(4), 360-365, 1983.

. C. A. R. Hoare, Hints on Programming Language

Design, Stanford Univ. Tech. Report STAN-CS-73-403,
1973.

. C. D. Marlin, A Methodical Approach to the Design of

a Programming Language and Its Application to the
Design of a Coroutine Language, Univ. Iowa Tech.
Report 83-05, 1983.

. C. M. Geschke and J. G. Mitchell, On the Problem of

Uniform References to Data Structures, JEEE Trans.
Software Eng. SE-1(2), 207-219, 1975.

. H. C. Lauer and E. R. Satterthwaite, The Impact of Mesa

on System Design, Proc. 4th Int. Conf. Software
Engineering, Munich, 1979.

N. Wirth, Programming in Modula-2, Springer-Verlag,
New York, 1985.

B. Liskov et al., CLU Reference Manual, MIT Tech.
Report MIT/LCS/TR-225, 1979.

M. B. Wells, M. B. Hug, and R. Silver, Libraries as
Programs Preserved within Compiler Continuations, SIG-
PLAN Notices 20(7), 83-92, 1985.

R. J. LeBlanc and C. N. Fischer, On Implementing
Separate Compilation in Block-Structured Languages,
SIGPLAN Notices 14(6), 139-143, 1979.

Reference Manual for the Ada Programming Lan-
guage, U.S. Dept. of Defense Document No. ANSI/MIL-
STD-1815A, 1983.

B. M. Brosgol, Some Issues in Data Types and Type
Checking, in Design and Implementation of Program-
ming Languages: Lecture Notes in Computer Science,
vol. 54 (J. H. Williams and D. A. Fisher, eds.), Springer-
Verlag, New York, 1977.

R. H. Yacobellis et al., The 3B20D Processor and
DMERT Operating System: Field Administration Subsys-
tems, Bell System Tech. J. 62(1), 323-339, 1983.

U. Ammann, The Zurich Implementation, in Pascal—the
Language and Its Implementation (D. W. Barron, ed.),
Wiley, New York, 1981.

R. E. Gantenbein, Dynamic Binding of Separately
Compiled Objects Under Program Control, Ph.D.
Thesis, University of Iowa, JIowa City, Iowa, August
1986.

T. A. Linden, The Use of Abstract Data Types to Simplify
Program Modification, SIGPLAN Notices 11 (Spec.
Issue), 12-23, 1976.

D. W. Jones, The Systematic Design of a Protection
Mechanism to Support a High-level Language, Ph.D.
Thesis, University of Illinois, Urbana, Dllinois, 1980.



pesign and Implementation of Dynamic Binding

21. An American National Standard: IEEE Standard
Pascal Computer Programming Language, IEEE Pas-
cal Standards Committee of the IEEE Computer Society
and ANSI/X359 of the American National Standards
Committee X3, 1983.

22. M. P. Atkinson and R. Morrison, Procedures as Persistent
Data Objects, ACM Trans. Program. Lang. Syst. 7(4),
539-559, 1985.

23. T. N. Turba and M. W. Whitelaw, The Pascal Exception
Handling Proposal, SIGPLAN Notices 20(8), 99-106,
1985.

APPENDIX. The db-Pascal Language System

The primary extensions to Pascal-P found in the db-
Pascal system are the separate compilation of procedure
bodies and the dynamic binding of these bodies into an
executing program. The extensions required modifica-
tion of both the Pascal-P compiler and interpreter.

Upon encountering a dynamic compiler directive
associated with a procedure name, the db-Pascal com-
piler saves the current compilation environment by
writing all currently known names (which the compiler
represents as Pascal records) and their associated bind-
ings (represented as pointers to records) to a text file.
This text file serves as the interface between each
procedure stub and its implementation(s). When compi-
lation of a separately defined procedure body begins, the
environment saved in the interface is restored by reading
in the text file and recreating the previously defined
structures and their associated bindings. Once these
bindings have been reestablished, variables based on
these structures can be reinstantiated and reset to the
appropriate values..

The interfaces between compilation umts are stored
within the UNIX hierarchical directory structure. The
environment for each declaration of a dynamic proce-
dure is written to a file named ‘‘sytab”’ in an immediate

subdirectory of the direciory containing the declaring .-

program or procedure. This subdirectory has the same
name as the dynamic procedure and contains the code
for the procedure body or bodies to be bound to that
procedure name. Multiple implementations of the same
procedure can use the same environment and even the
same name; separation is maintained by the directory
organization. Dynamic procedure declarations nested
within dynamic procedures continue this pattern. An
environment statement precedes every compilation unit
(except the top-level program) and lists the expected
chain of directories from the one containing the top-level
program to the one containing the unit. This statement is
used by the compiler to check that the procedure body is
in the correct directory and that all higher-level proce-

265

dures in the definition chain are defined in the proce-
dure’s environment.

The Pascal-P interpreter on which the db-Pascal
interpreter is based actually operates in two phases:
assembly and execution. The P-code statements gener-
ated by the compiler are input from a file; each statement
is assembled as it is input, and the resultant code is
stored in an internal code array. Once assembly is
complete, instructions in the code array are executed.

The extensions to the Pascal-P system to support
dynamic binding involve the generation and interpreter

support of two new P-code instructions, “‘Ink’’ (link)
and “‘cdp”” (call dynamic procedure). The compilation
of a db-Pascal /ink instruction produces a P-code ““Ink”’
as well as instructions that push the names of the
declared procedure and the separately defined body onto
the interpreter’s internal stack. The execution of a
“Ink’’ instruction initiates the loading of the named
procedure body; the assembly phase of the interpreter is
reentered at this point to assemble and load this code into
a segment of predefined size in the code array. The use
of segments allows the relinking of a procedure without
requiring compaction of the code array and subsequent
revision of references for names that are not relinked.

Once the assembly and loading of the dynamic
procedure are complete, execution of the program
recommences. When the dynamic procedure is called
via the ‘‘cdp’ instruction, a jump to the address
associated with the loaded procedure body takes place in
a manner similar to that for statically bound procedures.
Relinking the procedure thus simply requires replacing
the code in the segment allocated to a procedure body

. with new code from the file specified by the source code

link statement. Note that once a dynamic procedure is
allocated a segment in the code array, it does not
relinquish it; there is no unlink statement in db-Pascal.

An example program written in db-Pascal follows.
For each compilation unit, the source code and P-code
compiler output is given. An interpreter-defined execu-
tion trace is also given that shows both the assembly and
execution phases of the interpreter. Each trace step
shows the P-code instruction being acted upon and its
index in the code array; assembly-phase instructions are
surrounded by asterisks (*), and execution-phase in-
structions are surrounded by dollar signs ($). Note that
assembly of separate procedure code (which is much
like dynamic code except that it cannot be relinked)
takes place immediately after the inline code has been
assembled and is initiated by an instruction at the end of
the compiled code for the declaring segment. Assembly
of dynamic code, however, is initiated by the execution
of a “Ink” instruction and thus occurs while the

program is running.



266

R. E. Gantenbein and D. W. Jones

Jun 5 15:02 1986 main/testl.src Page 1

(*T+ ,C+*)
program testl(input,output);
const i = “i27;
procedure dl ; dynamic;
procedure sl ; separate;
begin
link “dl1” to “il”; 41;
link “dl” to i; dl;
sl
end (* testl *);

Jun 10 13:00 1986 main/code Page 1

1 3
ent 1
ent 2
ldei
lea” il
ldei
;LQ,‘."I
Ydei
1. 10
lca“’ ’
lak 0 9
nst
edp 0 9
ldei
lca®i2
ldei
lca“dl
ldeci
lea” 4
i 20
1ak 0 9
. mst
edp 0 9
nst
cup 0 1
retp
6=
1=

- g
© N NN

o N NLWOW
(-]

MEHEOPLPOWOW

el gt gt
N -

0

ast 0
Leup 0 1 S
m.tp.
q .
] _# * g1

Exhibit 1. A top-level unit.



Design and Implementation of Dynamic Binding 267

Jun 6 11:05 1986 main/d1l/il/src Page 1

(*T+ ,Co%)
environment dynamic dl.
procedure il;
procedure d2; separate;
begin
writeln(output,“hello world”);
d2
end (* 41 *),

Jun 10 13:00 1986 main/dl/il/code Page 1

1 3

eant 1 1 5
ent 2 1 6
1ca“hello world

ldei 11
ldei 11
lda 1 6
csp vrs
i 10
lda 1 6
csp vin
ast 0
cup 0 1 4
Tetp 3
1 S5= 10
1 6= 9
q
s & dl/il 42

Exhibit 2. A dynamic procedure body “‘dl/
il.!)



R. E. Gantenbein and D. W. Jones

Jun 6 10:36 1986 main/dl/il/d2/src Page 1

(*T+,Ce*)
environment separaste dl/xlldﬁ.
procedure d2;
begin

writeln(output,’hello from me’);
end.,

Jun 10 13:00 1986 wmain/dl/il/d2/code Page 1

1 &

ent 1 1 5
ent 1 1 6
lca“hello from me

1del 13
ldedi 13
lda 2 6
csp ‘wrs
i 10
-1da 2 6
csp wln
rTetp 0
1 Sm 9
1 6= 9
q
Exhibit 3. A separate procedure *‘d2”’

declared in ““il/dl.”



Design and Implementation of Dynamic Binding

-Jun

(*T+,Ce*)

6 10:38 1986

main/d1/i2/src Page 1

environment dynamic dl.
procedure i2;
begin

writeln(output,“hello there’);
end.

Jun 10 13:00 1986

1 3
ent 1 1 4
ent 2 1 3
lca“hello there
ldei 11
ldeci 11
lda 1 6
csp vrs
i 10
lda 1 6
csp wln
retp 3
1 bn 9
1 S= 9
q

main/d1l/i2/code Page 1

Exhibit 4, A dynamic procedure body *‘dl/

2.”



270 . R. E. Gantenbein and D. W. Jones

Jun 6 10:44 1986 main/sl/srec Page 1

(*T+,Ce*)

eavironment separate sl.
procedure sl;

begin

vriteln(output,“hello world”);
end, ‘

Jun 10 13:01 1986 main/sl/code Page 1

1 &

ent 1 1 5
ent 2 1 6
lca’hello world

ldei 11
ldei 11
1lda 1 6
csp vTs
i 10
_ 1lda 1 6
csp vin
retp 0
1 Sa 9
1 X 9
< .

Exhibit 5. A separate procedure “‘sl”’ declared in
the top-level unit.



Design and Implementation of Dynamic Binding

ASSEMBLY (*) AND EXECU

*ent ¥ 3
*ent * 4
*1de * 5
*lca * [
*lde ¥ 7
*lca * 8
*lde * 9
*lca * 10
*1lpk W* 11
*mst * 12
*cdp * 13
*lde * 14
*lca * 15
*lde * 16
*lca * 1?7
*1de * 18
_ *lca * 19
*lok * 20
*mst * 21
*cdp * 22
*met ¥ 23
*cup ¥ 24
Exhibit 6. Assembly and execution trace of “testl,”  *ret ¥ 25
*mst * 0
*cup * 1
*stp * 2
*ent ¥ 26
*ent * 27
*lca * 28
*lde * 29
*lde * 30
*lda * 31
*casp ¥ 32
*lda * 33
*csp ¥ 34
*ret * 35
$mst  § 0
$cup § 1
$ent § 3
jent § 4
$1dc § S
$lca § 6
$1de  $ 7
$lca § 8
$lde § 9
$lca § 10
$lnk § 11



2N ” R. E. Gantenbein and D. W. Jones

*ent ¥ 36
*ent 37
*lca * 38
*lde * 39
*lde * 40
*Ida * 41
*csp ¥ 42
*1da * 43
*csp * &4
*mgt * 45
*cup * 46
*ret * &7
*ent ® 48
*ent ¥ 49
*lca * 50
*lde * 51
*lde w 52
*lde = 53
*csp * 54
*lds * 55
*epp * 56
*ret * 57
$nst § 12
$cdp $ 13 _
$ent $ 36 . Exhibit 6. (continued).
$ent § 37
$lca § 38
$1de ¢ 39
$1dc § 40
$1da ¢ 41
Scsp $ 42
hello world$ida $ 43
$csp $ - 44
$nst § 45
$cup $ 46
$ent $ 48
Sent § 49
$1lca § 50
$1dec $ 51
$l1de $ 52
$1da  § 53
$csp § 54
hello from me$lda $ 55
Scsp § 56
$ret § 57
$ret § 47
$1de § 14
$lca § - 15
$1dec  § 16



Design and Implementation of Dynamic Binding 273

$l1ca § 17
$1dec $ 18
$1ca § 19
$1nk § 20
*ent * 36
*ent * 37
*lca * 38
*lde * 39
*lde * 40
*1ds * 41
*csp * 42
*lda * 43
*csp * 44
*ret ¥ 45
Smst $ 21
$cdp § 22
$ent § 36
$ent § 37
$lca $ 38
$1de $ 39
$1dec $ 40
Exhibit 6. (continued). $1ds $ 41
A $csp $ 42
hello there$lda $ 43
$csp § 44
§ret § 45
$mst $ 23
$cup $ 24
$ent § 26
$ent § 27
$lca § 28
$§1dec $ 29
$lde § 30
$§lda § 31
$csp § 32
hello world$lda $ 33
$csp § 34
$ret 35
$ret § 25
$§stp $ 2



The Journal of
g@ Systems and Software

Volume 8, Number 4, September 1988
Contents

Editor’s Coruer
Robert L. Glass

The Design and Implementation of 2 Dynamic Binding Feature for 2 High-Level Language
Rex E. Gantenbein and Douglas W. Jones

An Efficient Method Lookup Technique for Secondary Storage Object-Oriented Systems
Roger Wiens and Mohammad A. Ketabchi ’

Object Management in Local Distributed Systems
Songnian Zhou and Roberto Zicari

A Taxonomy for the Early Stages of the Software Development Life Cycle
Alan M. Davis

Fundamental Differences in the Relisbility of N-Meodular Redundancy and Redundancy and
N-Version Programming

Dave E. Eckhardt and Larry D. Lee

Understanding the ‘“90% Syndrome’’ in Software Project Management: A Simulation-Based

Case Study
Tarek K. Abdel-Hamid

Resource Utilization during Software Development
Marvin V. Zelkowitz '

Biographies

257

259

275

297

313

319

331

337



