
Dynamic Binding of Separately Compiled Objects
Under Program Control

Rex E. Gantenbein
Department of Computer Science

University of Wyoming
Laramie, WY 82071

Douglas W. Jones.
Department of Computer Science

University of Iowa
Iowa City, TA 52242

Although: most operating systems pro- Abstract

. vide dynamic linkage services that allow
Most high-level programming languages one running program to cause other

do not have the ability to control the programs to be loaded and run, = such
services are not usually provided in high- bindings between internal names and exter-

level languages. Instead, control over nal implementations of those names at run
time. This facility is necessary for the binding at execution time usually involves

use of the language in a monolingual pro- access of the binding facilities of the
gramming environment. The paper describes underlying operating system. The Multics
the semantics of a "dynamic binding" dynamic linker [Honeywel175], for example,
feature for a block-structured, strongly is automatically called whenever a program
typed language that supports such control references an unbound external name; after
end presents an experimental implementa-— the linker has bound the name, the program
tion of Pascal that contains dynamic may call a system service to terminate the
binding. binding so that the next reference to that

name wili relink it, possibly to a differ-
ent object. It should be noted that the
systep services are outside the semantics
of the programming languages involved; the
linkers do not perform type checking and

Introduction

An area of software engineering
receiving increased attention lately is
the “programming environment", a variation
on the operating system that is’ primarily
concerned with the support of high~level
language development. A common thread
through much programming environment re-
search is the trend toward “monolingual”
environments, in which no system-specific
job control language or shell is needed to
provide the connections between the pro-
grams making up a large application. In
[Heering85], the convergence of program-
ming and control languages is shown to
depend upon the ability of the unified
language to treat (1) procedures and pro-
grams and (2) files and types as
equivalent. Many high-level programming
languages have this ability, some of which
are mentioned in the article; however, any
language that is to be used to write a
command interpreter must provide some sort
of dynamic binding facility to link
programs together.

programs using these linkers are not
portable.

There appears to be no high-level
language that provides complete control
over bindings between names declared with-
in a program and procedural objects
external to the program while assuring the
consistency and correctness of the bind-
ings. Algol 68 [vanWijngaarden76] allows
strongly typed dynamic binding within the
confines of a single program. In this
language, it is legal to define procedure
variables, or pointers to procedures;
these pointers may be bound to any compat-
ible procedure {where compatibility is
determined by the structural equivalence
of the argument list and result), but no
provision is made for binding a procedure
name to an external object. Mesa
[Mitchel179] allows somewhat more flexi- —
bility; here, the language definition
includes separate compilation, with strong
type checking enforced across compilation-
unit boundaries by the Mesa binder. Permission to copy without fee all or part of this material is granted ; ‘

provided that the copies are not made or distributed for direct. parehermore, as in Mul tics, the binder oon
commercial advantage, the ACM copyright notice and the title of the e ynamica ly invoked to add new code to
publication and its date appear, and notice is given that copying is by 5 running program. Bofortunately ere
permission of the Association for Computing Machinery. To copy binding has been established, it cannot be
otherwise, or to republish, requires a fee and/or specific permission. systeus tend to orow ond must be pendod!.

cally restarted to prune off unneeded
© 1986 ACM-0-89791-177-6/86/0002/0287 $00.75 linkages.

287

A complete implementation of dynamic
binding in a strongly typed language would
involve all of the aspects described
above. The language would have to allow
programs to be constructed from separately
compiled pieces and it would have to
include constructs for dynamically con-
trolling the binding between internal
names and these external pieces. If the
problems illustrated by Mesa are to be
avoided, the language should provide some
method of unbinding or rebinding a pre-
viously bound name. In addition, the data
typing and data sharing rules should not
depend on whether the program pieces were
bound together at compile time or run
time.

The following program fragment illus-
trates how a dynamic binding mechanism can
provide a monolingual programming environ-
ment:

program Shell (...);
type a= ... ;

var b: a;
FileName: string;

#rocedure c (var b: a }; dynamic;
“begin

repeat ~ a

link ‘c' to FileName;
C5 .

until ...3

end {Shell}.

This example is written in a version of
Pascal extended to support dynamic bind-
ing. The program repeatedly binds the
dynamically linkable procedure "c" to
implementations stored in object files
hamed by successive values of the variable
"FileName". As such, "Shell" serves as a
control program to mediate the communica-
tion between the procedure or program
implementations linked to the name "c";

_since these are written in the same lan-
guage, this is a monolingual environment.
Furthermore, the global variable "b" has a
lifetime determined by the lifetime of the
program "Sheil", not by the duration of a
call to "c" or the lifetimes of the object
files containing implementations of "c".
In this way, dynamic binding can achieve a
form of control over persistent data (data
that outlives the program that creates
it), which has been shown to be one way of
implementing typed files [Atkinson82].
There is nothing to prevent the recompila-
tion or replacement of implementations of
“c" between calls, and given an appro-
priate checkpoint mechanism, "Shell" can
run forever.

Semantics of Dynamic Binding

Program development in a high-level
language can be viewed as a three-stage

288

process. The programmer writes the source
code; the compiler translates the high-
level code into machine language; and the
run-time system executes the resultant
code. In 6 modular language, these steps
may involve several pieces of code, in
which references across the compilation
unit boundaries must eventually be
resolved.

Separate compilation provides the sup-
port for the programmer's development of a
modular program. A linker supports the
compiler’s translation of separate source
code units by allowing the resolution of
external references to be postponed. In
most systems, the linkage sechanism
resolves all external references at the
time of linking. Those systems that
support run-time modularity (i.e., dynamic
binding) generally depend on operating
system services, not on the language and
its run-time facilities. Adding dynamic
binding to a language moves this run-time
modularity into the semantic domain of the
Janguage. This section explores the de-
sired semantics of dynamic binding in the
context of a strongly typed, block-
structured language.

The compile-time characteristics of a
language with dynamic binding should
closely resemble those of the language
without it. A language should not be
fundamentally changed by the inclusion or
exclusion of this feature; in particular,

programs not using an available feature
should be semantically identical toe those
constructed without access to the feature.
Binding can therefore be controlled by a
statement in the language that specifies
the name and object to be bound.

For a language to achieve run-time
modularity, it is essential that the

language support compile-time modularity
with separate compilation. This facility
is no longer exotic, having been included
in many languages, most notably Ada*® and
Modula-2; the feature of separate compila—
tion of particular importance to the cur-
rent discussion is the ability of a
compiler to completely type check the
separately compiled units. This type
checking must be performed for the local
identifiers, for external references to

identifiers, and for the interface by

which a unit specifies an object to be
dynamically linked to an internal name.
Complete type checking is necessary if
there is to be any guarantee that an ob-
ject correctly implements the name to
which it will be bound. Of course, run-
time type checking is a possible alterna-
tive, but the expenses of this epproach
are so high that it should be avoided if

. possibile.

* Ada is a registered trademark of the
U.S. Government, Ada Joint Program Office.

The rules for legal use of separately
compiled, dynamically bound objects are
clearly related to type equivalence rules.
Thus, the choice must be made between

structural equivalence and name equiv-—
alence. J£ structural equivalence is
used, each compilation unit must include a

structural definition of the context in
which it may be used, and this must be
compared with the actual context when
linkage is attempted. Name equivalence
requires that compilation units be
compiled for use in some previously de-
fined context. The Ada "subprogram is
separate" clause and "package" specifica-
tion {DoD83] and the Mesa "definitions
module” [Mitchell79] may be considered to
be definitions of contexts for this use.

When a dynamic binding mechanism is
called on to link a name “N" to some
object “o" at run time, the following
steps are involved:

1. Determine if it is safe to rebind "N",
2. Decouple "N" from its current binding

if it has one.
3. Locate the object “o".
4. Determine if binding "N" to "o"” is

legal.
5. Bind "N" to “o",

These steps can be described in terms of
three relatively independent semantic
issues:

a. The dynamic binding mechanism (steps 2
and 5).

b. An object-locating scheme (step 3).
c. Replacement safety and consistency

(steps 1 and 4).

These issues are independent in the sense
that there are many different ways of
approaching each issue, and the particular
approach taken in dealing with one issue
has little effect on. the approaches that
may be used to deal with the other two.
The following discussion addresses some of
the possible design decisions in each of
these areas.

What things can be dynamically bound?
This is one of the first questions that
must be asked when designing a dynamic
binding mechanism. A natural way to
answer the question is to list all the
kinds of things that have names and deter-
mine which of them can be dynamically
bound. Procedures, functions, and

abstract data type implementations are al]
reasonable candidates since esch is a
natural unit of separate compilation.
Simple variables may be viewed as dynami-
cally bound constants, and pointer vari-
ables may be viewed as dynamically bound
variables. Languages with label or type
variables may be considered to support
dynamic binding of labels and types.

289

At the heart of any dynamic binding
mechanism, there must be a loader to

include the separately compiled material
in the address space of the running pro-
gram, as well as a linkage mechanism to
connect dynamically bound names with newly
loaded objects. If the linkage is made
through an indirect link, as in the
Multics "combined linkage region", dynamic
bindings are easily changed. If the
linkage is made by modifying the address
fields of each instruction that references

the dynamically bound object, bindings are
harder to change. If user programs may
obtain and store actual code addresses in
user-managed data structures, bindings are
almost impossible to change. If the in-
direct links are stored in activation
records, many bindings of a name may
coexist (perhaps as many as there are
activations of the declaring block). Of
course, multiple bindings may only coexist .
if the loader is able to load different
bindings of a name into different memory
locations.

Locating an object to be bound by the
dynamic binding mechanism on most comput-
ers undoubtedly means locating an object-
code file produced by the compiler. Thus,
the locating scheme must involve searching
the file directory structure for a file
name specified by the linkage instruction.
Many operating systems provide a system
service that does this searching, but this

solution takes the problem out of the
semantic domain of the language. An
approach more suited to the stated intent
of this work would be to include in the
run-time support facilities of the lan-
guage a searching mechanism that returns
the location of the desired file. This
location could be a simple address; a more
sophisticated approach might make use of
capabilities, given an operating system
that supports capability-based addressing
{[Fabry74]. A third alternative is to put
the burden on the programmer; by requir-
ing that the access path to the file be
completely .specified as part of the
linkage statement, the run-time support
system could locate the object file di-
rectly without any need to search
directories.

Replacement and consistency problems
may arise in languages where names can be
dynamically re-bound after one binding has
already been established. In [Brosgol76],
two problems are identified: that of con-
verting instantiations from one form to
another when rebinding occurs, and that of
type identity when multiple bindings are
allowed to coexist and interact. A pat-
ented software system developed by Bell
Laboratories that permits individual
procedures to be dynamically replaced
adopts a very simple solution: No binding
may be changed except when all instances
of dynamically bound objects have been
deleted [Bishop84]. This is described as

the "clear stack" condition, and it is up
to the programmer to indicate when this
condition is true in a program, More
complex solutions may involve canonical
forms for instantiations 80 that
conversion is possible. An intermediately
complex solution involves disallowing the
rebinding of names when any instances of
that name exist; although some run-time
checking will undoubtedly be required,
compile-time checking may be able to par-
tially support such a solution. ©

An Experimental Implementation

'In order to more fully explore the
semantic issues involved in dynamic bind~
ing, a programming language incorporating
dynamic binding was implemented. For the
purpose of this experiment, the method-
ology described in [Marlin83] was used;
that is, a base language was selected, the
semantics of the feature were designed
before any syntactic commitments were
made, the semantic design problem was

broken into largely orthogonal pieces, and
specific abstract models were used to help
evaluate the alternatives for each piece.

Pascal was selected as the base lan-
guage for this experiment because it is
well known and because easily modified
partial implementations such as Pascal-P
[Barron81] are available. The experi-
mental language incorporating dynamic
binding, "db-Pascal", was implemented by
modifying the Pascal-P compiler to support
separate compilation and compile-time
safety checks, and by modifying the P-code
interpreter to include dynamic loading and
linking, as well as run-time safety
checking.

Of the named objects supported by
Pascal, procedures and functions are the
obvious candidates for dynamic linkage.
An important question is: Do results
obtained for procedures in Pascal apply to
abstract data type implementations such as
those provided by Ada packages or Mesa and
Modula-2 modules? In [Linden76], it is
argued that procedures and modules are
equivalent, while {JonesD81]} argues. that
modular and object-oriented encapsulation
mechanisms provide equivalent support for
abstract data type implementation,
Intuitively, this equivalence can be seen
by noting that the operations on = an
abstract data type may all be formulated
as procedures, and that rebinding the
implementation of the abstract data type
is equivalent to rebinding all of the
procedures (including those that allocate
space for instances of the type).

The mechanisms already in Pascal for
forward procedure declaration provided
useful direction for the introduction of
separate compilation into the language.
The Pascal forward declaration allows the
compiler to check the correctness of code

290

that calls a procedure or function before
the compiler has encountered the procedure
or function body. Dynamically linked
procedures can use the same facility, but
an additional mechanism is needed to allow
the compiler to check that the separately
compiled body conforms to the definition
used by the calling program.

The “compiler suspension" model of
{LeBlanc79] describes the semantics of
separate compilation in db-Pascal. In
this model, the (abstract) compiler
executes a "fork" operation when it
encounters a stub defining a separately
compiled object. One copy of the forked
compiler continues compilation of the
source program containing the stub, and
the other copy is suspended, ready to
begin compilation of the body of the
separately compiled object. (Separately
compiled object modules are stored as P-
code assembly language files.) The result
is that the semantics of the separately
compiled object are the same as they would
have been, had the text of the object been
inserted immediately after the stub.
Thus, stubs may appear at any nesting
level.

In order to implement separate compila-
tion and dynamic binding together, a new
compiler directive was added to Pascal,
dynamic. (Note that forward is the only
predefined compiler directive in standard
Pascal.) When the compiler encounteres
the dynamic directive, it dumps its symbol
table into a file with the same name as

the stub in a directory associated with
the source file. This symbol table con-
tains definitions of all label, type,

variable, procedure, and function names
that are globally accessible from within
implementations bound to the stub as well
as the formal parameter list of the stub.
Each compilation unit begins with an

"environment heading" indicating the stub
for which a body is being compiled. When
the compiler encounters this header, it
initializes its symbol table from the
associated file. The standard Pascal
“program heading" can be viewed as an
environment heading for the “user program"
stub of the system command language inter~
preter.

A new simple statement, link, provides

program control over the binding between

an internal procedure stub end an external
procedure body. This statement specifies
the name for the procedure and the access
path to the file containing the object
code for the procedure body. The access
path to the object file is assumed to
start in the directory in which the source.

code is located. The compiler stores the
access path as part of the compiled code
for the link statement; the use of the
path name eliminates the need for a run-

time locating mechanism.

The extensions of Pascal-P that charac-
terize db-Pascal are summarized in the
syntax specifications below. Additions to
the original specifications are under-
scored. The notation is that of [IEEE83],
whose notion of "extension" is also used
here.

simple-statement = empty-statement |
assignment~-statement
procedure-statement
goto-statement
link~statement

link-statement = "link" procedure-name-str
"to" procedure—-body-str

procedure—name-str = apostrophe-image

procedure-identifier

apostrophe-image

procedure—-body-str = apostrophe—image

path—name

apostrophe—image

path-name = {directory-identifier "/"}
file~—name

directory-identifier = ident3fier

ae
_* file—name = identifier

Note that, in this specification, direc-

tives are not explicitly included; this is
consistent with [IEEE83}, which does not
specify directives except to say that
forward is required in all implemen-

tations.

At run time, execution of the link
statement initiates the dynamic linkage
mechanism. The P-code interpreter assem-
bles the indicated object file (via the
path name specified by the link statement
in the original source) into an unused
code segment in its internal code array.
Db-Pascal only permits one implementation
of a given procedure to exist at any time,
so re-linking a previously linked name can
re-use the space used by the previous
implementation in the code array. A glob-.
al indirect link suffices to transfer

control to dynamically linked routines.

The only threat to safety in db-Pascal
involves attempts to rebind procedures
that are active. The decision to allow
only one implementation of any stub at any
time is the root cause of this threat. If
a procedure were to rebind itself or call
another procedure that rebinds it, chaos
would result. The db-—Pascal compiler
contains static checks to prevent a proce-
dure from rebinding itself or any
statically enclosing procedure. The db-
Pascal P-code interpreter maintains, with
each indirect link to a dynamically bound
routine, a count of the number of activa-
tion records currently in existence for
that routine; attempts to rebind a routine

291

with a non-zero count cause a fatal run-

time error,

This implementation was carried out on
a VAX 11/780 computer under Berkeley 4.2
Unix* during the summer of 1985. The
introduction of separate compilation into
the Pascal-P compiler required approx-
imately two man-weeks of work. Another
four man-weeks were spent to implement the
dynamic binding mechanism in the P-code
interpreter and to make the associated
changes for compile-time safety checks in

the compiler. The new implementation is
neither complete nor efficient, but it
demonstrates the relative ease with which
dynamic binding can be added to an
existing language.

The major limitation of db-Pascal is
that only procedures can be dynamically
bound; the implementation also suffers
from many problems inherent in P-~code
systems. It does, however, indicate that
dynamic binding is a feasible extension
for a strongly typed, block-structured
language. The implementation described
here allows programs to be written along
the lines of the example at the beginning
of this paper; if a checkpoint mechanism
were included in the language, it would
also allow persistent programming as
described in [Atkinson82]. A complete
monolingual environment would require that
an exception handling mechanism, like that
presented in [Turba85], be defined so that
execution errors do not cause an exit from

the environment; this mechanism can be

easily implemented with nonlocal gotos,
which unfortunately are not implemented in
the Pascal-P compiler from which the sys-—

tem was built. Also required would be a

global command interpreter, written in db-

Pascal, under which all user programs

(including the db-Pascal compiler) could

run.

* Unix is a registered trademark of Bell
Laboratories.

References

[Atkinson82} Atkinson, M. P., et al.

"PS-Algol: an Algol with a persistent

heap," SIGPLAN Notices 17, 7 (July 1982)

24-31.

[Barron81]} Barron, D.W., ed. Pascal:

The Language and its Implementation, John

Wiley and Sons, Chichester (1981).

[Bishop84] Bishop, T. "Online trans-
action processing," U. of Iowa Dept. of

Computer Science Colloqium (28 September

1984).

[Brosgol76] Brosgol, B. M. “Some
issues in data types and type checking,"
Design and Implementation of Programming
Languages, Springer-Verlag Lecture Notes
in Computer Science 54 (1976).

[DoD83} U. S. Dept. of Defense.
Reference Manuel for the Ada Programming
Language, ANSI/MIL-STD-1815A (1983).

[Fabry74] Fabry, R. S. "Capability-
based addressing," Comm. of the ACM 17, 7
(July 1974) 403-412.

{Heering85] Heering, J., and Klint, P..
"Towards monolingual programming environ-
ments," ACM TOPLAS 7, 2 (April 1985) 183-
213.

(Honeywel175}] Honeywell Information
Systems. Multics Programmers' Manual and
Reference Guide, Document Order No. AG91
(December 1975).

[IEEE83] IEEE Standard Pascal Compu-
ter Programming Language, Inst. of
Electrical and Electronic Engineers, New
York (1983).

[JonesD81] Jones, D. W. The Sys-
tematic Design of a Protection Mechanism
to Support a High-Level Laneuage, Ph.D.

Thesis, U. of Illinois (1980). Published
as U. of Iowa Technical Report TR 83-05 |
(August 1983).

[LeBlanc79] LeBlanc, R. J., and
Fischer, C. N. "On implementing separate
compilation in block-structured lan-
guages,” SIGPLAN Notices 14, 6 (August
1979) 139-143.

{Linden76] Linden, T. A. "The use of
abstract data types to simplify program
modification,” SIGPLAN Notices ll, Special
Issue (1976) 12-23.

[Marlin83] Marlin, C. D, "A methodical
approach to the design of programming
janguages and its application to the
design of a coroutine language," U. of |
Iowa Technical Report TR 83-05 (August
1983).

[Mitchel179] Mitchell, J. G., Maybury,
W., and Sweet, R. Mesa Reference Manual,
Version 5.0, Xerox Corp. (April 1979}.

{Turba85] Turba, T. N., and Whitelaw,
M. W. "The Pascal exception handling pro-
posal," SIGPLAN Notices 20, 8 (August
1985), 99-106,

[vanWijngaarden76} van Wijngaarden,
A., etal. Revised Report on the Algor-
ithmic Language Algol 68, Springer-Verlag
(1976).

292

Association for Computing Machinery

COMPUTER SCIENCE IN FOCUS: 1986

4986 ACM |

Fourteenth Annual

COMPUTER
SCIENCE

CONFERENCE’

_ February.4
-6,-1986

|

Cincinnati, Ohio

PROCEEDINGS _

