Dynamic Binding of Separately Compiled Objects
Under Program Control

Rex E. Gantenbein
Department of Computer Science
University of Wyoming
Laramie, WY 82071

Douglas W. Jones
Department of Computer Science
University of Iowa
Iowa City, IA 52242

Abstract Although most operating systems pro-
vide dynamic linkage services that allow

Most high-level programming langusges one running program to ceuse other

do not have the ability to control the programs to be loaded and run, such
bindings between internal names and exter— services are not usually provided in high-
nal implemgntations of those names at run . level languages. Instead, control over
time, This facility is necessary for the binding at execution time ususlly involves
use of the language in a monolingual pro- access of the binding facilities of the
gramming environment. The paper describes underlying operating system. The Multics
the semantics of & "dynamic binding" dynamic linker [Honeywell75], for example,

feature for a block-structured, strongly is automatically called whenever a progrem

typed language that supports such control references an unbound external name; after
and presents an experimental implementa- the linker has bound the name, the program

t?on of Pascal that contains dynamic may csll a system service to termipate the
binding. _ binding so that the next reference to that

name will relink it, possibly to a differ-
ent object. It should be noted that the
systen services are outside the semantics
of the programming languages involved; the
An area of software engineering linkers do not perform type checking and
receiving increased attention lately is programs using these linkers are not
the "programming environment™, s variation portable. '
on the operating system that is' primarily
concerned with the support of high-level There appears to be no high-level
language development. A common thread language that provides complete control
through much programming environment re— over bindings between names declared with-
search is the trend toward "monolingual” in a program and procedural objects
environments, in which no system-specific external to the program while assuring the

Job control language or shell is needed to consistency and correctness of the bind-
Algol 68 [vanWijngaarden76] allows

Introduction

provide the connections between the pro- ings.

grams making up a large application. In strongly typed dynamic binding within the
[Heering85], the convergence of program- confines of a single program. In this
ming and control languages is shown to language, it is legal to define procedure
depend upon the ability of the unified variables, or pointers to procedures;

these pointers may be bound to any compat-
ible procedure (where compatibility is
determined by the structural equivalence

language to treat (1) procedures and pro-
grams and (2) files and types as
equivalent. Many high-level programming

larnguages have this ability; some of which of the argument list and result), but no
are mentioned in the article; however, any provision is made for binding a procedure
language that is to be used to write a name to an external object, Mesa
command interpreter must provide some sort [Mitchell79] allows somewhst more flexi-
of dynemic binding facility to link bility; here, the language definition

includes separste compilation, with strong
type checking enforced across compilation-
unit boundaries by the Mesa binder.

programs together.

Permission to copy without fee all or part of this material is granted 5 {
provided that the copies are not made or distributed for direcgtra :‘ur;hermorei as in Multics, ;he blndder can
commercial advantage, the ACM copyright notice and the title of the € ynemica 1y invoked to add new code to
publication and its date appear, and notice is given that copying is by 8 Tunning program. Unfortunately 4 onceba
permission of the Association for Computing Machinery. To copy bigding has been established, it ce.umot €
otherwise, or to republish, requires a fee and/or specific permission. :;sie;sbr:l;e::. to g:os :::u:;z;trgz n;2§ 1212:8

cally restarted to prune off unneeded
© 1986 ACM-0-89791-177-6/86/0002/0287 $00.75 linkages.

287

A complete implementation of dynamic
binding in a strongly typed langusge would
involve all of the aspects described
above. The language would have to allow
programs to be constructed from separately
compiled pieces and it would have to
include constructs for dynamically con-
trolling the binding between internal
names and these external pieces. If the
problems illustrated by Mesa are to be
avoided, the language should provide some
method of unbinding or rebinding a pre-
viously bound name. In addition, the data
typing and date sharing rules should not
depend on whether the program pieces were
bound together at compile time or run
time.

The following program fragment illus-
trates how a dynamic binding mechanism can
provide a monolingual programming environ-
ment:

program Shell (...);
type a = ..., ;
var b: a;

FileName: string;
Procedure ¢ (var b: a); dynamic;
“begin

repeat =
link 'c' to FileName;
c3
until ...;
end {Shell }.

This example is written in a version of
Pascal extended to support dynamic bind-
ing. The program repeatedly binds the
dynamically linkable procedure "c" to
implementations stored in object files
named by successive values of the variable
"FileName™. As such, "Shell" serves as a
control program to mediate the communica-
tion between the procedure or program
implementations linked to the name "c";
since - these are written in the same lan-
guage, this is a monolinguel environment.
Furthermore, the global variable "b™ has &
lifetime determined by the lifetime of the
program "Shell”, not by the duration of &
call to "c" or the lifetimes of the object
files containing implementations of "c".
In this way, dynamic binding can achieve a
form of control over persistent dats (data
that outlives the program that creates
it), which has been shown to be one way of
implementing typed files [Atkinson82].
There is nothing to prevent the recompila-
tion or replacement of implementations of
"c" between calls, and given an appro-
priaste checkpoint mechanism, "Shell" can
run forever.

Semantics of Dynamic Binding

Program development in a high-level
language can be viewed as a three-stage

288

process. The programmer writes the source
code; the compiler translates the high-
level code into machine languasge; and the
run-time system executes the resultant
code. In a modular language, these steps
may involve several pieces of code, in
vhich references across the compilation
unit boundaries must eventuvally Dbe

resolved.

Separate compiletion provides the sup-
port for the programmer's development of a
modular program. A linker supports the
compiler's translation of separate source
code units by allowing the resolution of
external references to be postponed. In
most systems, the linksge wmechanism
resolves all external references at the
time of Ilinking. Those gystems that
support run-time modulsrity (i.e., dynamic
binding) generally depend on operating
system services, not on the language and
its run-time facilities., Adding dynamic
binding to & language moves this run~-time
rmodularity into the semantic domain of the
language. This section explores the de-
sired semantics of dynamic binding in the
context of a strongly typed, block-
structured language.

The compile-time characteristics of a
language with dynamic binding should

closely resemble those of the language

without it. A language should not be
fundementally changed by the inclusion or
exclusion of this feature; in particular,
programs not using an availsble feature
should be semantically identical to those
constructed without access to the feature,
Binding can therefore be controlled by a
statement in the language that specifies
the name and object to be bound.

For & language to achieve run-time
modularity, it is essential that the
language support compile-time modularity
with separate compilation. This facility
is no longer exotic, having been included
in many languages, most notably Ada* and
Modula-2; the feature of separate compila-
tion of particular importance to the cur-
rent discussion is the ability of a
compiler to completely type check the
separately compiled umits. This type
checking must be performed for the local
identifiers, for external references to
identifiers, and for the interface by
which a unit specifies an object to be
dynamically linked to an internal name.
Complete type checking is necessary if
there is to be any guarantee that am ob-
ject correctly implements the name to
which it will be bound. Of course, run~
time type checking is a possible alterna-
tive, but the expenses of this eapproach
are so0 high that it should be avoided if

possible.

* Ada 1is a registered trademark of the
U.S. Government, Ade Joint Program Office.

The rules for legal use of separately
compiled, dynamically bound objects are
clearly related to type equivalence rules.
Thus, the choice must be made between
structural equivalence and name equiv-
alence. If structural equivalence is
used, each compilation unit must include a
structural definition of the context in
which it may be used, and this must be
compared with the actual context when
linkage is attempted. Name equivalence
requires that compilation units be
compiled for use in some previously de-
fined context. The Ade "subprogram is
separate” clause and "package" specifice-
tion {DoD83] and the Mesa "definitions
module” [Mitchell79] may be considered to
be definitions of contexts for this use.

When a dynamic binding mechanism is
called on to link a name "N" to some
object "o" at run time, the following
steps are involved:

1. Determine if it is safe to rebind "N".

2. Decouple "N" from its current binding
if it has one.

3. Locate the object "o".

4. Determine if binding "N" to "o" is
legal.

5. Bind "N" to "o".

These steps can be described in terms of
three relatively independent sementic
issues:

8. The dynamic binding mechanism (steps 2
and 5).

b. An object-locating scheme (step 3).

c. Replacement safety and consistency
(steps 1 and 4).

These issues are independent in the sense
that there are many different ways of
approaching each issue, and the particular
approach taken in dealing with one issue
has little effect on. the approaches that
may be used to deal with the ' other two.
The following discussion addresses some of
the possible design decisions in each .of
these areas.

What things can be dynamically bound?
This is one of the first questions that
must be asked when designing a dynamic
binding wmechanism. A natural way to
answer the question is to list all the
kinds of things that have names and deter-
mine which of them can be dynamically
bound. Procedures, functions, and
abstract data type implementations are all
reasonable candidates since each is a
natural unit of separate compilation.
Simple variables may be viewed as dynami-
cally bound constants, and pointer vari-
ables may be viewed as dynamically bound
variables. Languages with label or type
variables may be considered to support
dynamic binding of labels and types.

289

At the heart of any dynamic binding
mechanism, there must be &a loader to
include the separately compiled material
in the address space of the rumning pro-
gram, as well as a linkage mechanism to
connect dynamically bound names with newly
loaded objects. If the linkage is made
through en indirect link, as in the
Multics "combined linkage region", dynamic
bindings are easily changed. If the
linkage is made by modifying the address
fields of each instruction that references
the dynamically bound object, bindings are
harder to change. If user programs may
obtain and store actual code addresses in
user-managed data structures, bindings are
almost dimpossible to change. If the in-
direct ‘links are stored in activation
records, many bindings of a name may
coexist (perhaps as many as there are
activaetions of the declaring block). Of
course, multiple bindings may only coexist
if the loader is able to load different
bindings of a name into different memory

locations.

Locating &n object to be bound by the
dynamic binding mechanism on most comput-
ers undoubtedly means locating an object-
code file produced by the compiler. Thus,
the locating scheme must involve searching
the file directory structure for & file
name specified by the linkege instruction.
Many operating systems provide a system
service that does this searching, but this
solution takes the problem out of the
semantic domain of the Ilanguage. An
approach more suited to the stated intent
of this work would be to include in the
run-time support facilities of the lan-
guage a searching mechanism that returns
the location of the desired file. This
location could be a simple address; a more
sophisticated approach might make use of
capabilities, given an operating system
that supports capability-based addressing
[Fabry74]. A third alternative is to put
the burden on the programmer; by requir-
ing that the access path to the file be
completely .specified as part of the
linkage statement, the run-time support
system could locate the object file di-
rectly without any need to search
directories.

Replacement and consistency problems
may arise in languages where names cen be
dynamically re-bound after one binding has
already been established. In [Brosgol76],
two problems are identified: that of con-
verting instantiations from one form to
another when rebinding occurs, and that of
type didentity when multiple bindings are
allowed to coexist and interact. A pat-
ented software system developed by Bell
Laboratories that permits individual
procedures to be dynamically replaced
adopts a very simple solution: No binding
may be changed except when all instances
of dynamically bound objects have been
deleted [Bishop84). This is described as

the “"clear stack™ condition, and it is up
to the progremmer to indicate when this
condition is true in a program. More
complex solutions may involve canonical
forms for instentiations B0 that
conversion is possible. An intermediately
complex solution involves disallowing the
rebinding of names when any instances of
that name exist; although some run-time
checking will undoubtedly be required,
compile-time checking may be able to par-
tially support such a solution.

An Experimental Implementation

In order to more fully explore the
semantic issues involved in dynamic bind-
ing, a programming language incorporating
dynamic binding was implemented. For the
purpose of this experiment, the method-
ology described in [Marlin83] was used;
that is, a base language was selected, the
semantics of the feature were designed
before any syntactic commitments were
made, the semantic design problem was
broken into largely orthogonal pieces, and
specific abstract models were used to help
evaluate the alternatives for each piece.

Pascal was selected as the base lan-
guage for this experiment because it is
well known and because easily modified
partial implementations such as Pascal-P
[Barron81] are available. The experi-
mental language incorporating dynamic
binding, "“db-Pascal", was implemented by
modifying the Pascal-P compiler to support
separate compilation and compile-time
safety checks, and by modifying the P-code
interpreter to include dynamic loading and
linking, as well as run-time safety
checking.

Of the named objects supported by
Pascal, procedures and functions are the
obvious candidates for dymamic linkage.
An important question is: Do results
obtained for procedures in Pascal apply to
abstract data type implementations such as
those provided by Ade packages or Mesa and
Modula-2 modules? In [Linden76], it is
argued that procedures and modules are
equivalent, while [JonesDBl] argues that
modular end object-oriented encapsulation
mechanisms provide equivalent support for
abstract data type implementation.
Intuitively, this equivalence can be seen
by noting that the operations on an
abstract data type may a2ll be formulated
as procedures, and that rebinding the
implementation of the abstract data type
is equivalent to rebinding all of the
procedures (including those that allocate
space for instances of the type).

The mechsnisms already in Pascal for
forward procedure declaration provided
useful direction for the introduction of
separate compilation into the language.
The Pascal forward declaration allows the
compiler to check the correctness of code

290

that calls & procedure or function before
the compiler has encountered the procedure
or function body. Dynamicelly linked
procedures can use the same facility, but
an additional mechanism is needed to allow
the compiler to check that the separately
compiled body conforms to the definition
used by the calling program.

The "compiler suspension" model of
[LeBlanc79] describes the semantics of
separate compilation in db-Pascal. In
this model, the (abstract) compiler
executes a "fork" operation when it
encounters a stub defining a separately
compiled object. One copy of the forked
compiler continues compilation of the
source program containing the stub, and
the other copy is suspended, ready to
begin compilation of the body of the
separately compiled object. (Separately
compiled object modules are stored as P-
code assembly language files.) The result
is that the semantics of the separately
compiled object are the same as they would
have been, had the text of the object been
inserted . immediately after the stub.
Thus, stubs may appear at any nesting
level.

In order to implement separate compila-—
tion and dynamic binding together, a new
compiler directive was added to Pascal,
dynamic. (Note that forward is the only
predefined compiler directive in standard
Pascal.) When the compiler encounteres
the dynamic directive, it dumps its symbol
table into a file with the same name as

" the stub in a directory associated with

the source file. This symbol table con-
tains definitions of all 1abel, type,
variable, procedure, -and function names
that are globally accessible from within
implementations bound to the stub as well
as the formal parameter list of the stub.
Each compilation unit begins with an
“enviromment heading" indicating the stub
for which a body is being compiled. When
the compiler encounters this header, it
initializes its symbol table from the
associated file. The standard Pascal
"program heading” can be viewed as an
environment heading for the "user progranm"
stub of the system command language inter-
preter.

A new simple statement, lipk, provides
program control over the binding between
an internal procedure stub end an external
procedure body. This statement specifies
the name for the procedure and the access
path to the file containing the object
code for the procedure body. The access
path to the object file is assumed to
start in the directory in which the source
code is located. The compiler stores the
access path as part of the compiled code
for the link statement; the use of the
path name eliminates the need for a run-
time locating mechanism.

The extensions of Pascal-P that charac-—
terize db-Pascal are summarized in the
syntax specifications below. Additions to
the original specifications are under-
scored. The notation is that of [IEEEB3],
whose notion of "extension" is also wused
here.

simple-statement = empty-statement |
assignment-statement |
procedure-statement
goto-statement
link-statement

link-statement = "link" procedure-name-str
Yo" procedure-body-str

procedure—name-str = apostrophe-image
procedure-identifier

apostrophe-image

procedure-body—str = apostrophe-image
path—name
apostrophe-image

path-name = {directory-identifier "/"}
file~name

directory-identifier = identdfier

g

file-name = identifier »

Note that, in this specification, direc-
tives are not explicitly included; this is
consistent with [IEEE83}, which does not
specify directives except to say that
forward is required in all implemen-

tations,

At run time, execution of the link
statement initiates the dynamic linkage
mechanism. The P—code interpreter assem-
bles the indicated object file (via the
path name specified by the link statement
in the original source) into an unused
code segment in its internal code array.
Db-Pascal only permits one implementation
of a given procedure to exist at any time,
so re-linking a previously linked name can
re-use the space used by the previous
implementation in the code array. A glob-
al indirect 1ink suffices to transfer
control to dynamically linked routines.

The only threat to safety in db-Pascal
involves attempts to rebind procedures
that are active. The decision to allow
only one implementation of any stub at any
time is the root cause of this threat. If
a procedure were to rebind itself or call
snother procedure that rebinds it, chaos
would result. The db-Pascal compiler
contains static checks to prevent a proce-
dure from rebinding itself or any
statically enclosing procedure. The db-
Pascal P-code interpreter maintains, with
each indirect link to a dynamically bound
routine, a count of the number of activa-
tion records currently in existence for
that routine; attempts to rebind a routine

291

with & non-zero count cause & fatal run-
time error.

This implementation was carried out on
a VAX 11/780 computer under Berkeley 4.2
Unix* during the summer of 1985. The
introduction of separate compilation into
the Pascal-P compiler required approx-
imately two man-weeks of work. Another
four man-weeks were spent to implement the
dynemic binding mechanism in the P-code
interpreter and to mske the associated
changes for compile-time safety checks in
the compiler. The new implementation is
neither complete nor efficient, but it
demonstrates the relative ease with which
dynamic binding can be added to an
existing language.

The major limitation of db-Pascal is
that only procedures can be dynamically
bound; the implementation also suffers
from many problems inherent in P-code
systems. It does, however, indicate that
dynamic binding is a feasible extension
for a strongly typed, block-structured
language. The implementation described
here allows programs to be written along
the 1lines of the example at the beginning
of this paper; if a checkpoint mechanism
were included in the langusge, it would
also ‘allow persistent programming as
described in [Atkinson82]. A complete
monolingual environment would require that
an exception handling mechanism, like that
presented in [Turba85], be defined so that
execution errors do not cause an exit from
the environment; this mechanism can be
easily implemented with nonlocal gotos,
which unfortunately are not implemented in
the Pascal-P compiler from which the sys-
tem was built. Also required would be a
global command interpreter, written in db-
Pascal, under which all user programs
(including the db-Pascal compiler) could

run.

* Unix is a registered trademark of Bell
Laboratories.

References

[Atkinson82] Atkinson, M. P., et al.
"pS-Algol: an Algol with s persistent
heap," SIGPLAN Notices 17, 7 (July 1982)
24-31.

[Barron81] Barron, D.W., ed. Pascal:

The Languege and its Implementation, Joha
Wiley and Sons, Chichester (1981).

[Bishop84] Bishop, T. "Online trams-
action processing,™ U. of Tows Dept. of
Computer Science Colloqium (28 September

1984).

[Brosgol76] Brosgol, B. M. "Some
issues in data types and type checking,"
Design and Implementation of Progremming
Lanpuapes, Springer-Verlag Lecture Notes
in Computer Science 54 (1976).

[DoD83) U. S. Dept. of Defense.
Reference Manual for the Adas Programming
Language, ANSI/MIL-STD-18154 (1983).

(Fabry74] Fabry, R. S. "Capability-
based addressing," Comm. of the ACM 17, 7
(July 1974) 403-412.

[Heering85] Heering, J., and Klint, P.
"Towards monolingual programming environ-
meats,” ACM TOPLAS 7, 2 (April 1985) 183-
213,

[Honeywell75] Honeywell Information
Systems. Multics Programmers‘ Manual and
Reference Guide, Document Order No. AG9I
(December 1975).

[IEEE83] IEFE Standard Pascal Compu~
ter Programmipg Language, Inst. of
Electrical and Electronic Engineers, New
York (1983).

[JonesD81] Jones, D. W. The Sys-
tematic Design of a Protection Mechanism
to Support a High-lLevel Language, Ph.D.
Thesis, U. of Illinois (1980). Published
as U. of Jowa Technical Report TR 83-05
(August 1983).

[LeBlanc79] LeBlanc, R. J., and
Fischer, C. N. "On implementing separate
compilation in block-structured lan-
guages,” SIGPLAN Notices 1l4, 6 (August
1679) 139-143.

{Linden76] Lindemn, T. A. "The use of
abstract data types to simplify program
modification,™ SIGPLAN Notices 11, Special
Issue (1976) 12-23.

[Mar1in83] Marlin, C. D. ™A methodical
approach to the design of programming
languages = and its application to the
design of a coroutine language,”" U. of
Iowa Technical Report TR 83-05 (August
1983).

[Mitchell79] Mitchell, J. G., Maybury,
W., and Sweet, R. Mesa Reference Manual,
Version 5.0, Xerox Corp. (April 1979).

[Turba85] Turba, T. N., and Whitelaw,
M. W. "The Pascal exception handling pro-
posal,” SIGPLAN Notices 20, 8 (August
1985), 99-106.

[vanVWijngaarden76] ven Wijngaarden,
A., et al. Revised Report on the Algor-
ithmic Languape Algol 68, Springer-Verlag
(1976).

292

Association for Computing Machinery

COMPUTER SCIENCE IN FOCUS: 1986

1986 ACM

Fourteenth Annual

'COMPUTER
SCIENCE
CONFERENCE®

February.-4-6, 1986

Cincinnati, Ohio

PROCEEDINGS

