
Practical Evaluation of a Data Compression
Algorithm

Dougias W. Jones!

Department of Computer Science
University of Iowa

Towa. City, Iowa 52242

(319) 353-7479
jones@herky.cs.uiowa.edu

1 Introduction

The idea.of using splay trees as the basis of a prefix code for data compression was
introduced in 1988 {4].. At around the same time, the University of Iowa Physics
department began development of the Visual Imaging System for the ISTP POLAR
satellite, to be launched in July 1993 [6]. What follows is a report on the feasibility
of using splay-tree based compression for image data transmitted from this satellite.
In short, we concluded that this algorithm is appropriate for use in this and other
similar-contexts.

The on-board processing resources available to satellite-based systems are. sig-
nificantly-limited by a number: of factors. -For example, a’ microprocessor may be

considered obsolete for use.on earth by the time it is available in low-power, radi-

ation hardened, launch certified form. Additionally, high radiation levels limit the
use of dynamic memory technology, and power restrictions further limit the available
memory resources. Finally, downlink bandwidths are severely restricted. for numerous

reasons.

The ISTP POLAR Visual Imaging System provides an example of these con-
straints. At the time this work was done, it was expected that this system. would
be based on a pair of 80C86 processors-clocked at.3.5 MHz. Each processor was. to

have only 64K of private RAM, only a fraction of which would be available for com-

pression. Finally, the downlink bandwidth allocated to the Visual Imaging System
is only 11 KBaud.

The scientific context of this system places a high value on obtaining sequences of
images in quick succession. In this context, transmitting each image as it is collected
is not adequate because of the limited downlink capacity. For example, a 256x256
image that is collected. in 4 seconds would take 48 seconds to transmit over the
downlink. This provides ample motivation for the use of data compression.

There are a large number of data compression algorithms [1, 5, 7], but most are
unsuited to this application. For example, although the widely used LZW algorithm
is quite fast, the memory required to hold a dynamically constructed dictionary of

This work was supported, in part, by NASA contract number NAS5-30316

372 TH0373-1/9 1/0000/0372/$01.00 © 1991 IEEE

373

common strings tound in the data being compressed is greater than the available
onboard memory.

Vector-quantization has been widely investigated as an image compression method

for use in High Definition Television, but the working assumption used has been that

large amounts of processing power were available to the transmitter while only limited

amounts of processing power were available at the receiver, exactly the opposite of the

situation with the hardware originally proposed. Furthermore, vector quantization
is lossy; the reconstructed 1 image may be visually equivalent to the original, but it is

only an approximation.

The splay-tree based compression algorithm offers a new alternative. This was

originally presented in [4], and it has the following characteristics: The code is a

prefix code, as used in Huffman codes and their variants: Thus, each byte (or. pixel)
to be transmitted is represented by a string of bits, with the more common bytes.

represented by shorter strings of bits in the compressed data.

At its simplest, splay-tree based compression requires only 2310 bytes of RAM

to hold a single tree and the stack used to reverse bit order. Unlike Huffman codes,

splay-tree based codes require no advance knowledge of the statistical character of the
data. Adaptive Huffman codes also: avoid the need for prior statistical knowledge,

but the splay-tree algorithm is faster and uses less memory. As with all adaptive

codes, the bit string used to encode a particular byte may vary from one occurence:

of that byte to the next.

Finally, unlike any of the other common data compression algorithms, splay-tree

based codes are locally adaptive; that is, if an image changes character in mid-

stream, the splay-tree code will re-adapt to the new context. Splay-tree based codes

are not optimal in the sense that. Huffman codes are, but their locally adaptive

behavior frequently allows them to outperform other codes on images or other data

that consists of regions with differing statistical characteristics.

The remainder of this paper is devoted to a study of the performance of the splay-
tree based data compression algorithm in the context of the hardware originally

proposed for the ISTP POLAR Visual Imaging System. This includes estimates
of the expected compression ratios, the speed of compression, and the impact of

transmission errors on the compressed data.

It should be noted that this work is not relevant to the ISTP POLAR Visual

Imaging Subsystem as actually built. The expected radiation hardened 80C86 pro-
cessors were not available, so four 2MHz 80C85 processors were used. These are

insufficient to accomplish any useful data compression without auxiliary hardware,

but it was possible to achieve acceptable degrees of compression using vector quanti-

zation by adding a DMA controller chip and and auxiliary arithmetic units to each

processor.

374

2 Compression Ratios

The original tests of the splay-tree based ‘compression algorithm’ reported j in [4] in-
cluded tests of the algorithm.on three digitized portraits of human faces. In these
experiments, the algorithm reduced these images to 0.235 times their original sizes,
giving a compression ratio of 4.25: 1 (original : compressed).

The data expected in the ISTP POLAR Visual Imaging System would: not be
expected to have the same character as: digitized portraits. The cameras will include
image intensifier hardware, and as a result, the value associated with each pixel in
an image will be simple function of the small. number. of of photons arriving at that
pixel. The net effect of this will be equivalent, to superimposing random’ snow on
each image.

A tape containing 385 images from the Dynamics Explorer 1 satellite’ was used
to test the splay-tree based compression algorithm on such data. These i images: are
lower resolution than those expected from the ISTP POLAR hardware, _and, they
were obtained by significantly simpler camera hardware {2 [2], but. they are expected to
have similar statistical characteristics:

When these images were compressed using the splay-tree based compression al-
gorithm, the average compression ratio was 2:42: 1 and the median was 2.33:1. One
image was compressed to 6.8:1, but the remaining ones were compressed in the range
of 1.3:1 to 5.2:1, withonly a. few files compressed to better than 3.3:1.

It is significant that the splay-tree based compression algorithm never made things.
worse. Most compression algorithms have a hard. time dealing with. completely ran-
dom inputs, and. the snow resulting from.the photon counting behavior of thei imaging
systems is random. In the presence of purely random data, the splay-tree-based al-
gorithm would be expected to perform aS poorly as 0.8: 1.

In examining the distribution of compression ratios for. the 385 images, there were
two large peaks, one.at around 1.5:1 and one at around 2.3:1. The former peak,
with poor compression, was characterized by bright snowy images, ‘typically: those :
taken of the day-side of the earth. The latter: peak was the largest and was typified
by night-side images with dark. backgrounds.

In the absence of noise or other high frequency components, delta coding can

improve the performance of many data compression algorithms. Delta coding involves
storing the pixels of an image as a sequence of differences, where each difference
encodes: the change in brightness between a pixel and its predecessor on the scan line.
Averaged over all 385 i images, delta coding was not an improvement; it degraded the

average compression ratio to 2. 29:1, but improved the worst. case, with no image
compressed to worse than 1.571.

375

3 Speed

The initial attempt to estimate-the speed of the splay-tree based compression al-
gorithm on a 3.5 MHz 80C86 indicated that the algorithm, as presented in [4], was
too slow, but within’a factor of two of an acceptable speed. Inspection of the code

indicated. that the primary problems were caused by a shortagé of registers, by too
many branch instructions, and by expensive array indexing.

On the 8086 processor, branch instructions impose a significant performance
penalty because they cause pipeline flushes. To avoid this, the conditionals in the

innermost loop in.the program were unfolded, resulting in considerable duplication
of code but the elimination of all but the essential branches.

Array indexing involves multiplying the offset. into the array by.the size of an
array element. The splay-tree based compression algorithm uses three arrays of 16-

bit words, and in the initial 8086 version of this code, the necessary multiplications

by two were performed by. adding registers to themselves. All of the array elements

in the program contain integers- used to simulate pointers, and as a result, it was
possible to eliminate the multiplication operations at run-time by pre-doubling all

the array elements as they are initialized.

After both of these changes. were made, it. was possible to squeeze all of the

working variables of the compression algorithm into registers. The central part of
the resulting algorithm, the compress procedure, was coded in 8086 assembly lan-
guage for performance analysis. The analysis was done by counting clock cycles with

reference to the 8086 technical documentation [3].

From this analysis, the average and worst-case times for a call to the compress
routine were determined. This analysis is valid for compression ratios of up to 5.33: 1.

The best possible compression ratio with this algorithm is 8:1. The results of this

analysis are given below and plotted in Figure 1. Here, T denotes an average time
and W denotes a worst case time, where all times are measured in 8086 machine

cycles and b/p is the compression ratio in bits” per. 8 bit pixel:

b _ 1:5

Tpizet = 74 + 330 +3632 = 128 +184b/p:

b/p — 1.
Wricet = 74+417 4394 2/ka= 18 = 203 + 192b/p

2

Lpizel 128
ya PRE S184 4 Tit b/p = 184+ b/p

] _ ee _ 203

The worst case and average. case times per bit of ‘compressed data differ because

the cost of a conditional branch instruction depends on whether the branch is taken.
If there is sufficient. buffering. of compressed data, only the average case matters, but

376

~ 11KBaud = 318 cycles/bit at 3.5Mhz
3007

clock NN. oN Worst case cycles | . .
per
bit . ——~. ee

Average case ——.
200 5

ee ee ee ee” 6
bits per pixel

8:1 5:1 4:1. 3:1 2:1
compression ratio

Figure 1: Compression time as a function of compression ratio.

if. compressed data is to be output directly to the transmission line from the compress
function, the worst case would be significant. - Ce

Given the empirical-determination that the splay-tree algorithm rarely compresses
data better than.5:1, compression can be done using roughly 85% of the available -
CPU time on an 3.5 MHz 80C86 transmitting at 11K Baud; this leaves about 50 clock
cycles per transmitted bit available to other purposes. In the worst case analysis,
‘however, 100% of -the available cycles can be consumed at a 5:1 compression ratio.

If data to be transmitted is broken up into frames or blocks, with buffers deliv-
ered periodically to the transmission subsystem, then the likelyhood of the worst case
being repeated over the length of a buffer becomes infinitesimal and can be ignored.
Thus, it is safe to draw the conclusion that splay-tree based compression is compu-
tationally feasible in the environment. of the ISTP POLAR Visual Imaging System
as originally proposed.

4 ‘Transmission Errors

Computational feasibility is not sufficient to justify use of a data compression al-
gorithm for transmitting downlink data. Transmission errors in compressed data
can destroy the utility of that data. Some compression schemes are comparatively

377

immune to errors. Among these, vector quantized data and data transmitted with
static Huffman codes are particularly resistant to corruption.

Unfortunately, data compressed with the splay-tree algorithm is highly vulnerable

to transmission errors. Although there is a small probability that an error will cause
only one pixel to be received in error, even single-bit errors are likely to completely

corrupt the entire stream of compressed data from the point of error to the end.

An accurate characterization of the expected error rates is needed to determine
whether this is a serious problem. The. downlink error rate included in the specifica-
tions for the ISTP POLAR mission is a maximum of | error per 100,000 bits, a figure
which translates to one error per 12,500:bytes. This suggests that, on the average,
every 256x256 image would be expected to contain more than 4 errors.

In order to further. understand the nature of the errors, the patterns of errors in

the 385 Dynamics Explorer I images were examined. These files contained a total of
6,798,000 8 bit pixels, of which. 10920 were’set to a value of 255 indicating that the

pixel may have been received in error. Most images were 152 by 120 pixels, or 18240

pixels, and only 20 images out of 385 contained 255 codes.

- Visual inspection of the 20 images containing 255 codes revealed that the 255
codes in 3 of the files were not error indications but indicated extremely bright areas
where the imaging system was saturated. The remaining 255 codes were clearly
grouped into 22 distinct error events, 6 of which involved isolated pixels and 16 of
which involved runs of.two or more pixels, usually many more.

22 error events in 6,798,000 bytes of data represents an error rate of roughly 1/500
the specified rate of one error in 100,000 bits. Whatever the cause of the difference
between observed and specified error rates, the fact that 4 majority of the observed
errors involved’ runs of pixels suggests that the addition of explicit error correcting
features to: the data compression system would be of little use.

As proposed, the ISTP POLAR Visual Imaging Subsystem was to be able to send
images as large as 512x512 pixels; at the observed error rate of one uncorrectable error

event every: 300,000 or so bytes, 62% of all images would be expected to be received
with .an uncorrectable error. Using data compression .reduces file sizes and thus

reduces the probability of an error corrupting any particular file, but at compression
ratios of 2.5:1, roughly 25% of all transmitted images would contain errors.

The effective gain G, of a data compression system in the presence of uncor-
rectable errors can be stated as the ratio of the number of undamaged images or.

other messages received to the number of images-that would have been received had
compression not. been used. For the purpose of conservative analysis, it is assumed
that transmission errors never.corrupt an uncompressed image.

In the absence of errors, G, is the same as the compression ratio C. G, decreases
with increasing probability of an image being damaged by an error; this probability
increases with increased image size S and with increased error rate R.

G.=C-—SR

Fortunately, it is quite easy to reduce the image size by the simple expedient

378

of.transmitting each image in multiple. parts, where each sub-image is compressed
independently and the start of each sub-image represents a possible error. recovery
point. If the subimages are interlaced ina manner comparable to the way television |

pictures. are. interlaced, for example, by transmitting every. other pixel of every other

scan ‘line. as.a subimage, it may be practical to. reconstruct approximations of the

pixels’ of a lost subimage from their neighbors in ‘other subimages. The effect of this

scheme is that lost subimages would be evident in the final data as lost resolution.

At the error rates observed in Dynamics Explorer | data; transmitting 512 by 512
images as.4 subimages of 256 by 256 pixels would lead to an effective gain greater .

than: 1 for all observed compression. ratios. At compression ratios of around 2.5:1,

as observed for Dynamics Explorer 1.data, G..would be better than 2.3: 1..

5 Recommendation

The cost. of subdividing. an image into multiple subimages is small but. significant.

Prior to transmitting each subimage,. the data structure. representing the splay-tree

must. be reinitialized- This occupies’ 1026 16 bit: words. Using computational ap- .

proaches. to initialization, this data structure can be built in ‘about 44000 clock cycles;

a block-copy. from a pre-constructed data structure in ROM can be done in: about

24000 cycles.

Given the empirical determination that the splay-tree algorithm rarely compresses.

data by more than 5:1, and that at this compression ratio, there are roughly 50 spare

clock cycles per: bit of compressed data, at least. 24000/50 bits must: be transmitted _

before the time taken to initialize the data structures can be ignored. ‘This allows.

reinitialization as frequently as every 300 pixels during the transmission:of an image.

Because the splay-tree algorithm ‘is adaptive, it. must be. given time to adapt

before it begins to perform -well. Specifically, it must encounter the more common”

pixel values in the image a few times each so that. the tree branches associated with

those values can be shortened. As a rule of thumb, if there are 256 possible. values

for each pixel, then the minimum size image segment needed .to make the splay-tree’

approach the optimal balance. will be some small multiple-of 256 pixels.

This suggests that a 512 by 512 image can be safely divided into about 256 sub-

images (each composed of every 16th pixel of every the 16th.scan line), but it should

be noted that-another consideration argues for. larger sub-images: To allow the start.

of: each sub-image to be easily identified, it must be clearly. marked. This is easily

accomplished’ if the compressed. data for each sub-i -image is sent as.a-sequence_ of

frames or blocks, where each includes-a header that identifies the initial block of each

sub-image. This scheme will waste an average of half of a block at the end of each

sub-image, and this waste can only be ignored if a fairly large number of blocks are

used. per sub-image.

Thus, itis reasonable to think in terms: of subdividing 512 by 512 images into

something. like 16 sub-images, sending ° every 4th pixel. of every 4th scan line i in each

379

sub-image. If 256 by 256 images are common, this would allow them to be divided

into 4 sub-images of the same size as the sub-images used for 512 by 512 images.

6 Code

Both the optimized. C and assembly language versions of the compression algorithm

are available from the author. The following optimized C code can be contrasted
with the code from [4]. This code was written so'that each statement corresponds to

one machine instruction.

#define MAXCHAR 256 © /* number of distinct pixel values */

#défine TWICEMAX 513 /* 2 * MAXCHAR + 1 */
#define ROOT 0 J tree root is left{0],right[0],up{[o] */

#define prefix *(WORD *) & /* allows byte indexing to each word */

BYTE left [MAXCHAR * 2]; /* prefix left[i] = left child of i */

BYTE right [MAXCHAR * 2]; /* prefix rignt [i] “= right child of i */

BYTE up [TWICEMAX * 2]; /* prefix up[i] = parent of i */
BYTE’ stack [MAXCHAR] ; /* used to reverse order of bits sent */

compress (plain)
WORD plain;

{register BYTE *sp; /* stack pointer */

register WORD a, b; /* children of nodes cand d */

register WORD c, d; /* pair of nodes to be semi-rotated */

= plain + MAXCHAR; a <<= 1;

sp = &stack(0];

for (;;) { /* walk up tree semi-rotating pairs of nodes */

= prefix up[a];
if (a == prefix left[c]) { /*-a is the left son of c */

*sp = 0; spt+;
if (c == ROOT) break;

d = prefix up[c];

b = prefix left{d];
if (c == b) { /* c is the left son of d */

-*Sp = 0; sp++;

b = prefix tele:
prefix right[d] =

prefix left[c] = By

prefix up[b] C;

prefix upla] = 4;

380

a= d;

if (a. != ROOT) continue;

break; /* loop exit! */

}.else { /* a is left son of c, the right son of d */

*sp'= 1; ‘sptt; |
prefix left({d] = a;

prefix left{c] = b;

prefix up[b] =
prefix up[a]

asd;
if (ats ROOT). continue;

break; /* loop exit! */

} /* control never reaches here */

} else { /* a right son of c */
¥*sp = 1; sptt;

if (c ==. ROOT) break;

d-= prefix up[c];

b = prefix left(d];
if (c == b) { /* c isthe left son of d */

*SD = 0; -sptt;

b = prefix right [d] ;

prefix right([d] =a;

prefix right{c] = b;

prefix up[b] =<;
prefix-up[a] = 4d;

a.= d;
if. (a != ROOT) continue;

break; /* loop exit! +*/
} else { /* a is right son of ¢, the right son of d */

*sp = 1; sptt;

prefix left{d] = a;
prefix right[c] = b;
prefix.up{b] = c;

prefix up(a] =;

a= d;

if (a != ROOT) continue;

break; /* loop exit! *7

} } 3} /* control never reaches here */

2 S
d;

/* all break statements above branch to here */

for (;;) { /* pop bits off the stack and transmit them.*/

--sp; bitbuf <<= 1;

bitbuf |= *sp; --bitcnt;
if (bitent != 0) {-/* normal case, bitbuf not full */

381

if (sp. '= &stack[0]}) continue;
return; : _

} else { /* abnormal case, bitbuf full, transmit it */

*byteptr.=- (char) (bitbuf & Oxff); ++byteptr;

if (byteptr '= bytemax) { /* normal, ‘bytebuf not full */
‘bitcnt = MAXBITCNT;

if (sp != &stack(0]) continue;
return;

} else { /* abnormal , bytebuf full, transmit it */
sendbuf () ;

bitcnt = MAXBITCNT;

if (sp != &stack[0]) continue;

return;

} } 3} } /* control never reaches here */
/* end compress function */

References

(1] Bell, T., Witten, I.H., and ‘Cleary, J.G. “Modeling for Text. Compression.” ACM

Computing Surveys, 21,4 (Dec. 1989) 557-591.

(2} Frank, L.A., and Craven, J.D. “Imaging Results From Dynamics Explorer 1.”

Review of Geophysics, 26, 2 (May 1988) 249-283.

(3], Intel. 14 PX 86, 88, 186 and 188 Usér’s Manual: Programmer’s Reference. Intel,

Santa Clara, California, 1983.

[4] Jones, D.W. “Application of Splay Trees to Data Compression.” Communica-

tions of the ACM, 31,.8 (Aug. 1988)-996-1007.

[5] Lelewer, D:A., and Hirschberg, D.S. “Data Compression.” ACM Computing Sur-
veys, 19, 3 (Sept..1987) 261-296.

(6] NASA Request for Proposal RFP5-15800/504 for the International Solar Ter-
restial Physics (ISTP) / Global Geospace Science (GGS) space segment, Dec 2,
1987.

[7] Storer, J.:A. Data Compression, Methods and Theory. Computer Science Press,

Rockville Maryland (1988).

“The Institute of Electrical an
. Electronics Engineers, Inc.

