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1. Introduction

Factor analytic models are widely used in social science applications to study latent traits,

such as intelligence, creativity, stress and depression, that cannot be accurately measured

with a single variable. In recent years, there has been a rise in the popularity of factor

models due to their flexibility in characterizing multivariate data. For example, latent factor

regression models have been used as a dimensionality reduction tool for modeling of sparse

covariance structures in genomic applications (West, 2003; Carvalho et al., 2008). In ad-

dition, structural equation models and other generalizations of factor analysis are widely

useful in epidemiologic studies involving complex health outcomes and exposures (Sanchez

et al, 2005). Improvements in Bayesian computation permit the routine implementation of

latent factor models via Markov chain Monte Carlo (MCMC) algorithms, and a very broad

class of models can be fitted easily using the freely-available software package WinBUGS.

The literature on methods for fitting and inferences in latent factor models is vast (for recent

books, see Loehlin, 2004, and Thompson, 2004).
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In using a factor analytic model for inferences on a covariance structure, it is appealing

to formally account for uncertainty in selecting the number of factors. There has been some

focus in the frequentist and Bayesian literature on the problem of selection of the number

of factors. Press and Shigemasu (1999) propose to choose the number of factors having the

highest posterior probability, noting that such an approach improves upon the commonly-

used AIC (Akaike, 1987) and BIC (Schwarz, 1978) criteria. For hierarchical models, such as

latent factor models, the BIC justification as an approximation to the Bayes factor breaks

down (Berger, Ghosh and Mukhopadhyay, 2003), and one may need a different penalty for

model complexity (Zhang and Kocka, 2004).

Estimation of posterior probabilities of models having different numbers of latent factors

poses major challenges such as (1) how to choose priors for the factor loadings in the list

of models corresponding to different numbers of factors; and (2) how to efficiently and

accurately estimate posterior model probabilities. Polasek (1997) considered approaches for

estimating posterior probabilities based on separate MCMC analyses of models differing only

in the number of factors. Although an estimate of the marginal likelihood is not automatically

available from the MCMC output, a number of algorithms have been proposed (Chib, 1995;

DiCiccio et al., 1997; Gelfand and Dey, 1994; Meng and Wong, 1996).

Lopes and West (2004) proposed a reversible jump MCMC (RJMCMC) algorithm (Green,

1995) to move between models with different numbers of factors, and conducted a thorough

comparison with estimators for approximating marginal likelihoods from separate MCMC

analyses under each model. In simulation studies, they found that a number of the methods

perform poorly relative to RJMCMC and bridge sampling (Meng and Wong, 1996) in terms

of proportions of simulations in which the true number of factors is assigned highest posterior

probability. A computational challenge in implementing RJMCMC for factor model selection

is the difficulty of choosing efficient proposal distributions. Lopes and West (2004) address

this problem by constructing proposals using the results of a preliminary MCMC run under
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each model. Such an approach is highly computationally demanding, becoming infeasible

as the sample size and potential number of factors increases. Motivated by this problem,

Carvalho et al. (2008) proposed an evolutionary search algorithm, which provides a useful

approach for searching for good factor models in high dimensions.

Lee and Song (2002) developed a method for estimating Bayes factors for selecting the

number of factors in a factor analysis model using the idea of path sampling (Gelman and

Meng, 1998). They proposed a procedure that is simple to implement and tends to have good

performance in terms of accuracy. In order to estimate a single Bayes factor for comparing

two competing models, their method requires running of separate MCMC algorithms along

a grid corresponding to different values for a path sampling constant. Although such an

approach can potentially be implemented in parallel, computational efficiency is nonetheless

a concern, particularly if one has many different models under consideration. In addition,

if the individual Markov chains exhibit poor mixing, which is a common problem in latent

factor models, one may need to run each chain for a very large number of iterations to obtain

accurate results.

An additional issue is that it is well known that Bayes factors are sensitive to the choice

of prior. In latent factor models, it tends to be difficult to elicit the parameters, since

in typical applications there is substantial uncertainty about the true values of the factor

loadings and error variances a priori. Hence, one would often prefer to choose a vague prior.

However, vague priors lead to problems with MCMC convergence, since in the limiting case

as the prior variance becomes large one can obtain an improper posterior. In addition, even

if this was not an issue, high variance priors tend to systematically favor small models, so

that one will tend to select a one factor model if the prior variance is extremely large. In

implementing their approach, Lee and Song (2002) used highly informative priors to avoid

this problem. However, if their highly informative values are concentrated around the wrong

values, as would typically be the case if there is substantial uncertainty a priori, then one
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would expect poor performance in terms of model selection. For example, one may tend to

discard an important factor inappropriately if the priors for the factor loadings have small

variance around values far from the truth.

Ghosh and Dunson (2007) proposed an approach for simultaneously addressing the issues

of efficient computation and prior specification in latent factor models through the use of a

parameter-expansion approach. This approach conveys a dramatic improvement in MCMC

efficiency in many cases, while inducing heavy-tailed priors that can be used for robust model

selection via the path sampling approach. We have observed good performance of such an

approach in a number of simulation studies.

In this chapter, we review the Ghosh and Dunson (2007) approach and propose a new

approach for estimating posterior probabilities of models with different numbers of factors.

The proposed approach relies on development of parameter expanded Gibbs samplers (Liu

and Wu, 1999; Gelman et al., 2007, Ghosh and Dunson, 2007) for all models in our list.

Based on the MCMC output we compute estimates for Bayes factors for models differing by

one factor. Using a simple identity one can then compute posterior probabilities from these

estimates. Clearly this method is computationally less demanding than some of the other

methods as we need to run a single MCMC algorithm to estimate a particular Bayes factor.

Additionally the use of parameter expansion facilitates good mixing. The method provides

reasonably accurate results, based on simulation studies.

Section 2 defines the model when the number of factors is known. Section 3 describes the

methodology used for estimating Bayes factors based on MCMC output when the number

of factors is unknown. Section 4 presents the results of a simulation study. Section 5

contains an application to rodent organ weight data, and Section 6 discusses the results.

The full conditional distributions for the parameter expanded Gibbs Sampler are given in

the Appendix.
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2. Specification of the Model

We shall first define a factor model when the number of factors is known to be k,

yi = Ληi + ǫi, ǫi ∼ Np(0,Σ), (1)

where Λ is a p × k matrix of factor loadings, ηi = (ηi1, . . . , ηik)
′ ∼ Nk(0, Ik) is a vec-

tor of standard normal latent factors, and ǫi is a residual with diagonal covariance matrix

Σ = diag(σ2
1, . . . , σ

2
p). Here the underlying latent factors, ηi, induce dependence among

the components of yi, because integrating out the latent factors we can write the marginal

distribution of yi as Np(0,Ω), with Ω = ΛΛ′ +Σ. Thus this model implies that the sharing

of common latent factors explains the dependence in the outcomes, and given the latent

factors the outcome variables are uncorrelated. For example, the outcomes can be results

from various blood tests of an individual and the underlying latent factor may be the health

score for that individual. Usually the number of factors is small relative to the number of

outcomes (k << p). This leads to sparse models for Ω containing many fewer than p(p+1)/2

parameters. For this reason, factor models provide a convenient and flexible framework for

modeling of a covariance matrix, especially in applications with moderate to large p.

The above factor model (1) without further constraints is not identifiable under orthog-

onal rotation. For example if we post-multiply Λ by an orthonormal matrix P, where P is

such that PP′ = Ik, we will obtain exactly the same Ω as in the previous factor model (1).

To avoid this issue of non-identifiability, we impose some additional restrictions on the factor

loadings matrix Λ. We assume that Λ has a full-rank lower triangular structure to ensure

identifiability. As the k(k − 1)/2 elements in the upper triangular part of Λ are restricted

to be zero, the number of free parameters in Λ and Σ is q = p(k + 1) − k(k − 1)/2. Here,

k must be chosen so that q ≤ p(p + 1)/2. We use this restriction as a default, motivated

by applications in which the latent factors do not have a pre-specified interpretation but are
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included primarily to induce a sparse covariance structure in multivariate data. However,

our approach can be easily modified to factor analysis applications in which the different

measurements are designed as manifestations of latent traits of interest (e.g., intelligence,

stress, etc).

To complete a Bayesian specification of model (1) we would need to specify the prior

distributions for the free elements of Λ and Σ. A popular choice is truncated normal pri-

ors for the diagonal elements of Λ, normal priors for the lower triangular elements, and

inverse-gamma priors for σ2
1 , . . . , σ

2
p . These choices are convenient, because they represent

conditionally-conjugate forms that lead to straightforward posterior computation by a Gibbs

sampler (Arminger, 1998; Rowe, 1998; Song and Lee, 2001). However, this prior specification

suffers from a few major drawbacks. Firstly specification of the hyperparameters in the prior

may be difficult. Prior elicitation is particularly important in this model, because in the lim-

iting case as the prior variance for the normal and inverse-gamma components increases the

posterior becomes improper. To address this problem often informative priors are chosen.

In the absence of subject matter knowledge sometimes the hyperparameters in the prior are

chosen after an initial analysis of the data. Using the data twice in this manner could lead

to an underestimation of uncertainty in model selection. Secondly, even if informative priors

are used, the Gibbs samplers tend to exhibit extreme slow-mixing.

Ghosh and Dunson (2007) address the above problems by generalizing the idea of Gelman

(2006) to induce a new class of robust priors for the factor loadings. They use parameter

expansion to induce a class of t or folded-t priors depending on sign constraints on the

loadings. In absence of subject matter expertise they recommend using a Cauchy or half-

Cauchy prior as a default. They also demonstrate good mixing properties of their parameter

expanded Gibbs sampler compared to the traditional Gibbs sampler, using various simulated

and real data examples. In this chapter we outline a method to select the number of factors

using their prior.

6



3. Bayesian Uncertainty in the Number of Factors

To allow an unknown number of factors k, we choose a multinomial prior distribution, with

Pr(k = h) = κh, for h = 1, . . . , m. We then complete a Bayesian specification through priors

on the coefficients within each of the models in the list k ∈ {1, . . . , m}. This is accomplished

by choosing a prior for the coefficients in the m factor model having the form described in

Ghosh and Dunson (2007). We first induce a prior on Λ(m) through parameter expansion.

For any smaller model k=h, the prior for Λ(h) is obtained by marginalizing out the columns

from (h+1) to m. In this manner, we place a prior on the coefficients in the largest model,

while inducing priors on the coefficients in each of the smaller models. We induce a prior on

Λ(m) by defining the following parameter expanded (PX) factor model:

yi = Λ∗(m)η∗

i + ǫi, η∗

i ∼ Nk(0,Ψ), ǫi ∼ Np(0,Σ) (2)

where Λ∗(m) is p × m working factor loadings matrix having a lower triangular structure

without constraints on the elements, η∗

i = (η∗i1, . . . , η
∗

im)′ is a vector of working latent

variables, Ψ = diag(ψ1, . . . , ψm), and Σ is a diagonal covariance matrix defined as in

(1). Note that model (2) is clearly over-parameterized having redundant parameters in

the covariance structure. In particular, marginalizing out the latent variables, η∗

i , we obtain

yi ∼ Np(0,Λ
∗(m)ΨΛ∗(m)′+Σ). Clearly, the diagonal elements of Λ∗(m) and Ψ are redundant.

In order to relate the working model parameters in (2) to the inferential model parameters

in (1), we use the following transformation:

λ
(m)
jl = S(λ

∗(m)
ll )λ

∗(m)
jl ψ

1/2
l , ηil = S(λ

∗(m)
ll )ψ

−1/2
l η∗il for j = 1, . . . , p, l = 1, . . . , m (3)

where S(x) = −1 for x < 0 and S(x) = 1 for x ≥ 0. Then, instead of specifying a prior for
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Λ(m) directly, we induce a prior on Λ(m) through a prior for Λ∗(m),Ψ. In particular, we let

λ
∗(m)
jl

iid
∼ N(0, 1), j = 1, . . . , p, l = 1, . . . ,min(j,m)

λ
(m)
jl ∼ δ0, j = 1, . . . , (m− 1), l = j + 1, . . . , m, ψl

iid
∼ G(al, bl), l = 1, . . . , m, (4)

where δ0 is a measure concentrated at 0, and G(a, b) denotes the gamma distribution with

mean a/b and variance a/b2. This prior is conditionally-conjugate, leading to straightforward

Gibbs sampling.

Bayesian selection of the number of factors relies on posterior model probabilities:

Pr(k = h |y) =
κh π(y | k = h)∑m
l=1 κl π(y | k = l)

(5)

where the marginal likelihood under model k, π(y | k = h), is obtained by integrating the

likelihood
∏

i Np(yi; 0,Λ
(k)Λ(k)′ +Σ) across the prior for the factor loadings Λ(k) and residual

variances Σ. We still need to consider the problem of estimating Pr(k = h |y) as the marginal

likelihood is not available in closed form. Note that any posterior model probability can

be expressed entirely in terms of the prior odds O[h : j] = {κh/κj} and Bayes factors

BF [h : j] = {π(y | k = h)/π(y | k = j)} as follows:

Pr(k = h |y) =
O[h : j] ∗ BF [h : j]∑m
l=1O[l : j] ∗ BF [l : j]

(6)

We choose κh = 1/m, which corresponds to a uniform prior for the number of factors k. To

obtain an estimate of the Bayes factor BF[(h - 1): h], for comparing models k=(h-1) to k=h,

we run the PX Gibbs sampler under k = h. Let {θ
(h)
i , i = 1, . . . , I} denote the I MCMC

samples from the PX Gibbs sampler under k = h, where θ
(h)
i = (Λ

(h)
i ,Σi). We can then

estimate BF [(h− 1) : h] by the following estimator:
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B̂F [(h− 1) : h] =
1

I

I∑

i=1

p(y|θ
(h)
i , k = h− 1)

p(y|θ
(h)
i , k = h)

(7)

We do this for h = 2, . . . , m.

The above estimator is based on the following identity:

∫
p(y|θ(h), k = h− 1)

p(y|θ(h), k = h)
p(θ(h)|y, k = h)dθ(h) =

∫
p(y|θ(h), k = h− 1)

p(θ(h))

p(y|k = h)
dθ(h)

=
p(y|k = h− 1)

p(y|k = h)
(8)

We can obtain the Bayes factor for comparing any two models. For example, the Bayes

factor for comparing the one factor and the m factor models is obtained as: BF [1 : m] =

BF [1 : 2] ∗ BF [2 : 3] . . . BF [(m − 1) : m]. Using (6), we can estimate the posterior model

probabilities in (5). We will refer to this approach as Importance Sampling with Parameter

Expansion (IS-PX).

Lee and Song (2002) use the path sampling approach of Gelman and Meng (1998) for

estimating log Bayes factors. They construct a path using a scalar t∈ [0, 1] to link two

models M0 and M1. They use the same idea as outlined in an example in Gelman and Meng

(1998) to construct their path. To compute the required integral they take a fixed set of grid

points for t, t∈ [0, 1] and then use numerical integration to approximate the integration over

t. For a detailed description of using path sampling for computing Bayes factors refer to the

chapter Bayesian Model Comparison of Structural Equation Models in this book. Note that

factor models are a special case of structural equation models.

Although their approach is promising in terms of accuracy, it is quite computationally

intensive, requiring running of separate MCMC algorithms for each value of t in the grid. In

contrast, using IS-PX we avoid the need to run multiple analyses, though it is not clear that

this will necessarily improve efficiency, since we may require a long chain to obtain accurate
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estimates of the Bayes factors. Given that the true Bayes factors are not available and are

analytically intractable, our assessment of the performance of IS-PX will rely on simulations.

In addition to the difficulty of estimating the Bayes factor, an important challenge in

Bayes model comparisons is sensitivity to the prior. It is well known that Bayes factors tend

to be sensitive to the prior, motivating a rich literature on objective Bayes methods (Berger

and Pericchi 1996; Berger and Pericchi 2001). Lee and Song (2002) rely on highly-informative

priors in implementing Bayesian model selection for factor analysis, an approach which is

only reliable when substantial prior knowledge is available allowing one to concisely guess a

narrow range of plausible values for all of the parameters in the model. Such knowledge is

often lacking. This motivated Ghosh and Dunson (2007) to modify the Lee and Song (2002)

path sampling approach to allow the use of their default PX-induced priors. They refer to

this as path sampling with parameter expansion (PS-PX).

4. Simulation Study

Here we consider two sets of simulation studies and compare our results with those from the

PS-PX approach, as reported in Ghosh and Dunson (2007). Let m denote the maximum

number of factors in our list. We routinely standardize the data prior to analysis.

4.1 One Factor Model

In the first simulation, p = 7, n = 100, the true number of factors, k = 1 and

Λ = (0.995, 0.975, 0.949, 0.922, 0.894, 0.866, 0.837)′

diag(Σ) = (0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30).
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we take m to be 3, which is also the maximum number of factors resulting in an identifiable

model. We repeat this simulation for 100 simulated data sets. To specify the prior for the

PX Gibbs sampler, we induce half-Cauchy and Cauchy priors, both with scale parameter 1,

for the diagonals and lower triangular elements of Λ respectively. For the residual precisions

σ−2
j we take G(1, 0.2) priors. This choice of hyperparameter values provides a modest degree

of shrinkage towards a plausible range of values for the residual precision. For each simulated

data set, we run the Gibbs sampler for 25,000 iterations, discarding the first 5,000 iterations

as a burn-in. We note that for IS-PX we need only the samples from the grid t = 1 of the

PS-PX approach. Here IS-PX chooses the correct model 92/100 times and PS-PX 100/100

times.

4.2 Three Factor Model

For the second simulation study, p = 10, n = 100, and the true number of factors, k = 3.

This presents a more difficult scenario as some of the loadings are negative and there is more

noise in the data compared to the previous one-factor model.

Λ′ =




0.89 0.00 0.25 0.00 0.80 0.00 0.50 0.00 0.00 0.00

0.00 0.90 0.25 0.40 0.00 0.50 0.00 0.00 −0.30 −0.30

0.00 0.00 0.85 0.80 0.00 0.75 0.75 0.00 0.80 0.80




diag(Σ) = (0.2079, 0.1900, 0.1525, 0.2000, 0.3600, 0.1875, 0.1875, 1.0000, 0.2700, 0.2700).

For this second simulation example the true model has three factors and the maximum

number of factors resulting in an identifiable model is 6. We take m = 4 following Ghosh

and Dunson (2007). We carry out the simulations exactly as in the previous simulation

study. Here IS-PX chooses the correct model 86/100 times compared to 100/100 by PS-PX.

In these simulations 10 gridpoints were considered for PS-PX, so given that IS-PX takes
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only 1/10 of the run-time its performance is reasonably good. Running the MCMC much

longer would improve its performance. A point to be noted here is that in the simulations

where the wrong model is chosen, the bigger model with four factors is selected. For these

datasets the parameter estimates under both three and four factor models are very similar,

with the entries in the fourth column of the loadings matrix being close to zero. Hence even

if the bigger model is chosen by IS-PX in some cases, we do not expect much deterioration

in parameter estimates.

5. Application to Rodent Organ Weight Data

We illustrate our method for model selection by using it on a real dataset. We have or-

gan weight data from a U.S. National Toxicology Program (NTP) 13 week study of An-

thraquinone in female Fischer rats. The goal of such studies is to assess the short term

toxicological effects of test agents on a variety of outcomes, including animal and organ

body weights. Studies are routinely conducted with 60 animals randomized to approxi-

mately six dose groups, including a control. In the Anthraquinone study, doses included 0,

1875, 3750, 7500, 15000 and 30000 ppm.

At the end of the study, animals are sacrificed and a necropsy is conducted, with overall

body weight obtained along with weights for the heart, liver, lungs, kidneys (combined) and

thymus. Although body and organ weights are clearly correlated, a challenge in the analysis

of these data is the dimensionality of the covariance matrix. In particular, even assuming

a constant covariance across dose groups, it is still necessary to estimate p(p + 1)/2 = 21

covariance parameters using data from only n = 60 animals. Hence, routine analyses rely

on univariate approaches applied separately to body weight and the different organ weights.

We can use a factor model here to reduce dimensionality, but it is not clear whether

it is appropriate to assume a single factor underlying the different weights or if additional
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factors need to be introduced. To address this question using the Anthraquinone data,

we repeated the approach described in Section 3 in the same manner as implemented in

the simulation examples. Body weights were standardized within each dose group prior to

analysis for purposes of studying the correlation structure. Here we ran the algorithm for

100,000 iterations for IS-PX. The maximum possible number of factors was m = 3.

The estimated probabilities for the one, two and three factor models under IS-PX are

0.4417, 0.3464 and 0.2120 and using PS-PX are 0.9209, 0.0714 and 0.0077 respectively, as

reported in Ghosh and Dunson (2007). The estimated factor loadings for the one and two

factor models are presented below:

Table 1: Posterior Summaries Under the One Factor Model for Organ Weight Data

Weight Parameter Mean 95% CI
body λ1 0.88 [0.67,1.10]
heart λ2 0.33 [0.08,0.59]
liver λ3 0.52 [0.28,0.77]
lungs λ4 0.33 [0.08,0.59]

kidneys λ5 0.70 [0.48,0.94]
thymus λ6 0.42 [0.17,0.68]

Table 2: Posterior Summaries Under the Two Factor Model for Organ Weight Data

Weight Parameter Mean 95% CI Parameter Mean 95% CI
body λ11 0.87 [0.66,1.09] λ12 0 [0,0]
heart λ21 0.34 [0.08,0.61] λ22 0.24 [0.01,0.73]
liver λ31 0.52 [0.28,0.78] λ32 -0.15 [-0.63,0.45]
lungs λ41 0.35 [0.09,0.62] λ42 0.29 [-0.62,0.88]

kidneys λ51 0.70 [0.48,0.94] λ52 -0.06 [-0.44,0.29]
thymus λ61 0.42 [0.17,0.68] λ62 -0.14 [-0.66,0.49]

Body weight and kidney weight are the two outcomes having the highest correlation

with the latent factor in the one factor analysis. The estimated covariance matrix is similar
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under the one and two factor models, and the loadings on the second factor tend to be zero,

suggesting that the second factor is not needed. This is also true for the third model. We also

examined the likelihoods at the posterior mean of Ω. For the two and three factor models

the increase in likelihood seems small compared to the number of additional parameters. In

that sense the factor model with one factor seems most appropriate. Hence, the estimates of

the posterior probabilities from PS-PX seem more realistic. However, given that we obtained

similar estimates of the induced covariance matrix under the one, two and three factor models

using the PX approach, it may be that there is little penalty to be paid for the additional

complexity involved in fitting the multiple factor models given the regularization implicit

in the Bayes approach. However, from the standpoint of ease in interpretation, the more

parsimonious one factor model is certainly preferred.

6. Discussion

For analyzing high-dimensional, or even moderate-dimensional, multivariate data, the factor

model provides a convenient tool for sparse modeling of the covariance matrix. This kind of

data arises in a wide variety of applications ranging from genomics, where the outcomes may

be highly correlated measurements on multiple genes, to epidemiology where the goal may be

to study the effect of a collection of nutrients, many of which are highly correlated. Usually

in such cases, the number of factors to be included in the model is unknown and leads to

a challenging model uncertainty problem. A Bayesian solution to this problem proceeds by

treating the number of factors as unknown and then assigning prior probabilities to each

model in the list. After observing the data, the prior probabilities are updated to obtain

posterior probabilities for each model.

In this chapter we have proposed an easy to implement, fully Bayesian approach for

estimating the posterior model probabilities via Bayes factors. Model selection based on
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fully Bayesian approaches tends to be computationally intensive. Gibbs samplers that exhibit

slow-mixing add to the already existing heavy computational burden of model selection. This

is why we choose a default heavy-tailed prior for factor loadings (Ghosh and Dunson, 2007),

that greatly facilitates mixing. Using a simple identity we show our estimate is unbiased for

estimating Bayes factors.

Comparing our method to the path sampling approach (Ghosh and Dunson, 2007; Song

and Lee, 2002) based on simulated and real data, we find that it is relatively fast but less

accurate. We have found that when it fails to choose the correct model, it usually prefers a

model with more factors than the true model, and most of the loadings for the extra factors

are close to zero. Since the loadings matrix for the true model can be thought to be nested

within a larger factor model, with entries in the last columns equal to zero, we note that

choosing a larger model in this case is more desirable than choosing a wrong model with

less factors. To estimate the Bayes factor between two models that differ by one factor,

our method currently uses the samples only from the larger model. Introducing a single

bridge density between the two models may improve results substantially, while adding only

negligible computational cost. This still needs further work and seems to be a promising

direction for future research.
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Appendix: Full Conditional Distributions for the Gibbs

Sampler

Suppose we have a model with k factors, conditional distributions for the PX Gibbs Sampler

are presented below:

yij = z′ijλ
∗

j + ǫij , ǫij ∼ N(0, σ2
j ),

where zij = (η∗i1, . . . , η
∗

ikj
)′, λ∗

j = (λ∗j1, . . . , λ
∗

jkj
)′ denotes the free elements of row j of Λ∗,

and kj = min(j, k) is the number of free elements. Let π(λ∗

j ) = Nkj
(λ∗

0j ,Σ0λ
∗

j
) denote the

prior for λ∗

j , the full conditional posterior distributions are as follows:

π
(
λ∗

j |η
∗,Ψ,Σ,y

)
= Nkj

((
Σ−1

0λ
∗

j

+ σ−2
j Z′

jZj

)
−1(

Σ−1

0λ
∗

j

λ∗

0j + σ−2
j Z′

jYj

)
,
(
Σ−1

0λ
∗

j

+ σ−2
j Z′

jZj

)
−1

)
,

where Zj = (z1j , . . . , znj)
′ and Yj = (y1j, . . . , ynj)

′. In addition, we have

π(η∗

i |Λ
∗,Σ,Ψ,y) = Nk

((
Ψ−1 + Λ∗′Σ−1Λ∗

)
−1

Λ∗′Σ−1yi,
(
Ψ−1 + Λ∗′Σ−1Λ∗

)
−1

)
,

π(ψ−1
l |η∗,Λ∗,Σ,y) = G

(
al +

n

2
, bl +

1

2

n∑

i=1

η∗il
2

)
,

π(σ−2
j |η∗,Λ∗,Ψ,y) = G

(
cj +

n

2
, bj +

1

2

n∑

i=1

(yij − z′ijλ
∗

j)
2

)
,

where G(al, bl) is the prior for ψ−1
l , for l = 1, . . . , k, and G(cj, dj) is the prior for σ−2

j , for

j = 1, . . . , p.
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