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Abstract

Choosing the subset of covariates to use in regression or generalized linear models
is a ubiquitous problem. The Bayesian paradigm addresses the problem of model un-
certainty by considering models corresponding to all possible subsets of the covariates,
where the posterior distribution over models is used to select models or combine them
via Bayesian model averaging (BMA). Although conceptually straightforward, BMA
is often difficult to implement in practice, since either the number of covariates is too
large for enumeration of all subsets, calculations cannot be done analytically, or both.
For orthogonal designs with the appropriate choice of prior, the posterior probability of
any model can be calculated without having to enumerate the entire model space and
scales linearly with the number of predictors, p. In this article we extend this idea to
a much broader class of non-orthogonal design matrices. We propose a novel method
which augments the observed non-orthogonal design by at most p new rows to obtain a
design matrix with orthogonal columns and generate the “missing” response variables
in a data augmentation algorithm. We show that our data augmentation approach
keeps the original posterior distribution of interest unaltered, and develop methods to
construct Rao-Blackwellized estimates of several quantities of interest, including pos-
terior model probabilities of any model, which may not be available from an ordinary
Gibbs sampler. Our method can be used for BMA in linear regression and binary re-
gression with non-orthogonal design matrices in conjunction with independent “spike
and slab” priors with a continuous prior component that is a Cauchy or other heavy
tailed distribution that may be represented as a scale mixture of normals. We provide
simulated and real examples to illustrate the methodology. Supplemental materials for
the manuscript are available online.
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1 Introduction

Linear models remain among the most popular methods for modeling relationships between

a Gaussian response variable and a set of explanatory variables and provide a foundation

for many nonparametric regression methods with the appropriate selection of basis vectors,

such as splines, wavelets and kernel regression (Clyde and George 2004). The generalization

of the Gaussian linear model to other exponential families leads to the familiar generalized

linear models, e.g. probit or logistic regression for binary outcomes. For many applications,

it is routine to collect data on many variables of interest and entertain a wide variety of

possible models. Computational advances have facilitated the Bayesian treatment of such

problems, where the Bayesian approach to model uncertainty proceeds by treating the model

as an unknown parameter, and assigns prior probabilities to all possible models under con-

sideration. Given the observed data, these probabilities are updated via Bayes theorem to

obtain posterior probabilities of models, which may be used in the selection of a model via

decision theoretic approaches taking into consideration other costs (Fouskakis et al. 2009) or

in Bayesian model averaging (BMA) using the full joint posterior distribution (see Draper

(1995); Hoeting et al. (1999) or Clyde and George (2004) for reviews and additional refer-

ences).

While it is straightforward to formulate the model uncertainty problem under the Bayesian

paradigm, its implementation often becomes non-trivial in large problems, particularly with

highly correlated predictors. Heaton and Scott (2010) compare several recent stochastic

search algorithms and note that traditional Markov chain Monte Carlo (MCMC) methods

for sampling from the posterior distribution of models often fail to reach regions of the model

space with high posterior probability. For identifying high probability models, they argue in

favor of using alternative stochastic search algorithms (Berger and Molina 2005; Scott and

Carvalho 2008; Clyde et al. 2010) that rely on having analytic expressions for marginal likeli-
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hoods, such as with Zellner’s g-prior (Zellner 1986) or mixtures of g-priors (Zellner and Siow

1980; Liang et al. 2008); the renormalized likelihoods are used to estimate posterior model

probabilities and marginal inclusion probabilities in lieu of (noisy) Monte Carlo frequencies.

While these methods are better at identifying high probability models, both Heaton and

Scott (2010) and Clyde et al. (2010) note substantial disagreement in estimates such as

posterior inclusion probabilities between MCMC methods and these alternative stochastic

search methods in high dimensional problems. Clyde and Ghosh (2010) prove that estima-

tors based on renormalized likelihoods lead to biased estimates of inclusion probabilities and

other quantities under BMA, which in turn may result in higher mean squared errors. Alter-

native choices are independent proper “spike and slab” variable selection priors (Ishwaran

and Rao 2005) which lead to generalized ridge regression estimates. Despite progress over

the last decade, there is clearly still a need for improved algorithms and estimators in the

variable selection/model averaging problem.

In the case of linear regression with designs matrices with orthogonal columns and inde-

pendent normal priors on regression coefficients, one can obtain closed form expressions for

posterior probabilities of models and marginal posterior inclusion probabilities (conditional

on σ2), without explicit enumeration of the entire model space of 2p models. Such “orthogonal

designs” arise naturally in the context of designed experiments or wavelet regression, where

p = n. The computational advantages from orthogonality have been exploited by Chipman

et al. (1997); Clyde et al. (1998); Clyde and George (1999, 2000); Johnstone and Silverman

(2005), among others, to provide computationally efficient estimators in non-enumerable

model spaces that provide adaptive shrinkage with outstanding frequentist properties. For

general design matrices, Clyde et al. (1996); Clyde and Parmigiani (1996) transform the non-

orthogonal design to an orthogonal design and developed efficient algorithms for Bayesian

model averaging (BMA) based on importance sampling. Their approach led to better per-

formance in terms of prediction in many cases, but does not readily lend itself for variable
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selection as models are defined in terms of combinations of the original predictor variables.

In this paper, we propose a novel method that augments a non-orthogonal design with

additional rows, such that the columns of the resulting “complete” design matrix are mutu-

ally orthogonal. Unlike Clyde et al. (1996) the Orthogonal Data Augmentation algorithm

presented in Section 2 permits both model averaging and model selection in terms of the

original variables. The response variables corresponding to the newly introduced rows are

treated as missing data and are sampled using MCMC algorithms. Exploiting properties

of orthogonal designs, in Section 2.2 we construct “Rao-Blackwellized” (RB) estimates of

posterior model probabilities by marginalizing over the missing responses and prove that the

RB estimates have smaller variances than the ergodic averages. A key feature of the ODA

formulation is the use of Rao-Blackwellization to provide a simple method for estimating

the mass of unsampled models. In Section 3 we discuss how to select the augmented design

and its properties. We compare the ODA algorithm and RB estimator to other methods

in Section 4 using the simulation design of Nott and Kohn (2005), for which p = 15, so

that enumeration is feasible and estimates can be compared to the truth. We show that our

estimates of model probabilities can outperform Monte Carlo estimates and provide accurate

estimates of the unsampled mass. The ODA formulation allows extensions to heavier tailed

prior distributions on regression coefficients constructed as scale mixtures of normals. In

Section 5, we show how to implement ODA with independent Cauchy priors and compare

the results to the multivariate Zellner-Siow Cauchy prior (Zellner and Siow 1980). In Section

6 we apply our methods to the ozone data analyzed by Friedman and Silverman (1989) and

more recently by Liang et al. (2008), with a model space of dimension 244 that prohibits enu-

meration. Empirically, we show that ODA does as well or better than BMA with the Zellner

g prior, Zellner-Siow Cauchy prior or shrinkage methods using the lasso (Tibshirani 1996)

or horseshoe prior (Carvalho et al. 2010). Finally, using the latent variable formulations,

we may extend the class of models to binary regression. We illustrate the ODA method for
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probit regression in Section 7 using the well known Pima Indian diabetes dataset. In Section

8 we conclude with possible extensions of our method.

2 Orthogonal Data Augmentation

The basis of the popular Expectation-Maximization (EM) algorithm of Dempster et al. (1977)

or the Data Augmentation (DA) algorithm of Tanner and Wong (1987) (and their many

extensions) is to augment the observed data with missing data, so that the resulting complete

data model is much simpler. Letting Yo ≡ (Y1, Y2, . . . , Yno
)T denote the observed response

vector of length no, we may augment it with a vector of length na of unknown missing

response variables Ya, so that the complete response data is denoted as Y T
c

= (Y T
o

, Ya

T ),

with length nc = no +na. In the regression context, we must also specify a design matrix for

the missing Ya. For fractional factorial experiments, there is a natural choice for this design

matrix based on the remaining fraction from the full factorial experiment. We propose a

method that can be used to construct a design matrix for the more general observational

setting.

To begin, let Xo = [x0, x1, . . . , xp] denote the no× (p+1) observed design where x0 is an

n×1 vector of ones representing an intercept. Without loss of generality we assume that the

remaining p predictor variables xj for j > 0 have been centered so that they are orthogonal

to the intercept (xj
T x0 = 0) and have been rescaled by dividing by their standard deviation

(using no, rather than no−1 in the denominator). This standardization leads to the diagonal

elements of XT
o
Xo being the sample size no and the off-diagonal elements of XT

o
Xo being

no times the correlation of the columns of Xo. Such standardizations are commonly used

in ridge regression or other shrinkage methods such as the lasso so that coefficients may be

interpreted on the same scale. The normal linear model using the full design matrix may be
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written as

Yo = Xoβ + ǫ, (1)

where β = (β0, β1, . . . , βp)
T is a vector of regression coefficients, ǫ ∼ N(0, σ2Ino

), Ino
is the

identity matrix of dimension no and σ2 is the variance.

For the variable selection problem, models may be represented by a binary vector γ =

(γ1, . . . γp)
T ∈ {0, 1}p ≡ Γ, where γj = 0 implies that variable xj has been removed from the

model or equivalently that γj = 0 ⇔ βj = 0, so that under model γ

Yo | βγ, σ2, γ ∼ N(Xoγβγ, σ2Ino
) (2)

where Xoγ is n × (pγ + 1) design matrix and βγ is the pγ + 1 dimensional vector of non-

zero model specific regression coefficients; by default, the intercept is always assumed to be

included in Xoγ. To transform the problem of model search with a general design matrix to

one with an orthogonal design, we augment the rows of the observed design matrix Xo with

a na × (p + 1) design matrix Xa, such that the resulting “complete” design matrix

Xc =




Xo

Xa


 (3)

has orthogonal columns, XT
c
Xc = XT

o
Xo + XT

a
Xa = D, where D = diag(δ0, δ1, . . . , δp)

is a diagonal matrix with δj > 0. For now, we assume that such a matrix will exist and

defer discussion of how to select Xa until Section 3. Under model γ, given model specific

parameters (βγ, σ2) and the design Xa, Ya has the same distribution as the observed data

Yo and is independent of Yo, leading to the complete data model

Yc | βγ, σ2, γ,∼ N(Xcγβγ, σ2Inc
). (4)
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We begin with limiting conjugate prior distributions for β0 and σ2 and conjugate prior

distributions for βγ

p(β0) ∝ 1 (5a)

βj | σ2, λj, γj
ind
∼ N

(
0, σ2 γj

λj

)
for j = 1, . . . , p (5b)

p(σ2) ∝ 1/σ2 (5c)

where βj is degenerate at 0 if γj = 0. As both β0 and σ2 are assumed to be included in all

models, this and arguments based on orthogonal parametrizations and invariance to scale

and location transformation have been used to justify this objective choice in many variable

selection applications, see Liang et al. (2008); Berger et al. (1998) for more details.

Using independent Bernoulli prior distributions on the inclusion indicators γj

p(γ | π) =

p∏

j=1

π
γj

j (1 − πj)
1−γj (6)

the posterior distribution of γ given σ2 and the complete data Yc also has an independent

product Bernoulli distribution

p(γ | Yc, σ
2) =

p∏

j=1

{
p(γj = 1 | Yc, σ

2)
γj
(
1 − p(γj = 1 | Yc, σ

2)
)1−γj

}
(7a)

with posterior inclusion probability ρj(Yc, σ
2, λj) ≡ p(γj = 1 | Yc, σ

2) expressed via posterior

odds as

ρj(Yc, σ
2, λj) ≡ Oj(Yc, σ

2, λj)/
(
1 + Oj(Yc, σ

2, λj)
)

(7b)

Oj(Yc, σ
2, λj) ≡

πj

1 − πj

(
λj

δj + λj

)1/2

exp

{
1

2

δj

δj + λj

β̂2
j

σ2
δj

}
for j = 1, . . . , p.

7



The estimate β̂j is the jth element of β̂ = (XT
c
Xc)

−1XT
c
Yc, the vector of OLS regression

coefficients of β using the complete data Yc, Xc. Because XT
c
Xc is diagonal, the inversion

is trivial. The quantity, β̂2
j δj/σ

2 in the exponential term of the posterior odds is the square

of the Z-score for testing the hypothesis βj = 0, thus the posterior probabilities provide a

way of converting frequentist test statistics into the posterior probabilities of hypotheses via

Bayes Theorem.

Predictions under orthogonal designs with BMA are greatly simplified. To predict a

future Y⋆ observed at X⋆, the mean of the posterior predictive distribution

E(Y⋆ | Yc, σ
2) = x⋆

0β̂0 +

p∑

j=1

x⋆
jp(γj = 1 | Yc, σ

2)
δj

δj + λj

β̂j (8)

takes the form of a multiple shrinkage estimator with linear shrinkage of the OLS estimate

induced from the normal prior distribution given that βj is non-zero, and nonlinear data-

dependent shrinkage from the posterior inclusion probability p(γj = 1 | Yc, σ
2) that arises

from the uncertainty of whether βj is non-zero. Note that in the orthogonal case, the

summation is over p terms as opposed to 2p terms in BMA with non-orthogonal designs. Of

course, while Ya is not necessary under orthogonal designs, σ2 is generally unknown. In the

context of wavelets with no missing data (Yc = Yo), Clyde et al. (1998) use robust estimates

of σ2 from the data. As using a “plug-in” estimate for σ2 may underestimate uncertainty,

they suggest using a Gibbs sampler and calculate RB estimates of inclusion probabilities and

fitted values. In the next section, we introduce a two-component Gibbs sampler based on

the idea of orthogonal data augmentation that allows us to incorporate uncertainty in Ya

and σ2.
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2.1 ODA Algorithm

Given the model for the complete data (4) and the prior specification in (5a-5c) and (6), we

may construct a two block Gibbs sampler with [σ2, Ya] in one block and the vector [γ] in

the other using the following sequence of distributions:

1/σ2 | γ, Yo ∼ G

(
no − 1

2
,
(Y T

o
Yo − β̃T

oγ
(XT

oγ
Xoγ + Λγ)β̃oγ)

2

)
(9a)

Ya | σ2, γ, Yo ∼ N

(
Xaγβ̃oγ, σ2(Ina

+ Xaγ(XT
oγ

Xoγ + Λγ)−1XT
aγ

)
)

(9b)

γj | Ya, σ2, Yo

ind
∼ Ber(ρj(Yc, σ

2, λj)) for j = 1, 2, . . . , p, where (9c)

β̃oγ = (XT
oγ

Xoγ + Λγ)−1XT
oγ

Yo (10)

is the posterior mean for βγ under model γ and observed data Yo, ρj(Yc, σ
2, λj) is given

by equation (7b), and Λγ is a (pγ + 1) × (pγ + 1) diagonal matrix with first entry λ0 = 0

and the remaining pγ entries are given by the subset of λj where γj = 1. The block [Ya, σ2]

is sampled by drawing σ2 from p(σ2 | γ, Yo), and then drawing Ya from p(Ya | γ, σ2, Yo).

Alternatively the joint distribution could be decomposed by drawing first Ya | γ, Yo and

then drawing σ2 | Yc, γ. In practice we noted no difference, but prefer the former order

as the draws for σ2 are independent of Ya given γ and are from the full conditional in the

collapsed sampler where Ya has been integrated out. Because of the independence of γ given

[Yc, σ
2], the entire block may be drawn in parallel.

The Markov chain may be used to “marginalize” over the distribution of Ya, so that we

account for uncertainty in Ya appropriately, however, Xa has been held fixed throughout.
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This in fact does not alter the posterior distribution p(βγ, σ2, γ | Xo, Yo) as

p(βγ,σ2, γ | Xo, Xa, Yo)

=

∫
p(Ya, βγ, σ2, γ | Xo, Xa, Yo) dYa

=

∫
p(Yo | βγ, σ2, γ, Xo)p(Ya | βγ, σ2, γ, Xa)p(βγ, σ2 | γ)p(γ) dYa∑

γ∈Γ

∫∫∫
p(Yo | βγ, σ2, γ, Xo)p(Ya | βγ, σ2, γ, Xa)p(βγ, σ2 | γ)p(γ) dYa dβγ dσ2

=
p(Yo | βγ, σ2, γ, Xo)p(βγ, σ2 | γ)p(γ)∑

γ∈Γ

∫∫
p(Yo | βγ, σ2, γ, Xo)p(βγ, σ2 | γ)p(γ)dβγ dσ2

= p(βγ, σ2, γ | Xo, Yo) (11)

is the distribution of interest. We now show how Rao-Blackwellization may be used with the

ODA sampler to reduce Monte Carlo variation in estimates.

2.2 Rao-Blackwellized Estimates of Quantities of Interest

Ergodic averages given the output of MCMC may be used to estimate functions of interest,

such as model probabilities, inclusion probabilities and predictions. Let 1(γ = γ∗) denote

the indicator function for the event γ = γ⋆, then the ergodic average or Monte Carlo (MC)

frequency estimator of the probability of model γ⋆ is p̂MC(γ⋆ | Yo) = 1
K

∑K
k=1 1(γ(k) = γ⋆),

where K is the number of draws from the Markov chain. Similarly posterior inclusion

probabilities may be estimated by taking an ergodic average of 1(γj
(k) = 1) and in general

for a function t(γ),

t̂MC(γ) =
1

K

K∑

k=1

t(γ(k)). (12)

“Rao-Blackwellization” of estimates (Gelfand and Smith 1990) has been suggested as a

way to construct improved estimates by replacing t(γ(k)) with its expectation given other

components in the sampler, and then applying the ergodic average to marginalize over the
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components. Applying this to the ODA sampler, leads to RB estimates of t(γ)

t̂RB(γ) =
1

K

K∑

k=1

E[t(γ(k)) | Yo, Y
(k)

a
, σ2(k)

] =
1

K

K∑

k=1

E[t(γ(k)) | Y (k)
c

, σ2(k)
]. (13)

Because of the product Bernoulli posterior for γ conditional on Ya, σ2, analytic expressions

for the conditional expectation of the indicators of models, individual inclusion indicators

or predictions is trivial. For ODA, the RB estimators of model probabilities and inclusion

probabilities take the form

p̂RB(γ | Yo) =
1

K

K∑

k=1

p∏

j=1

ρj(Y
(k)

c
, σ2 (k), λj)

γj
(
1 − ρj(Y

(k)
c

, σ2 (k), λj)
)1−γj

(14a)

p̂RB(γj = 1 | Yo) =
1

K

K∑

k=1

ρj(Y
(k)

c
, σ2 (k), λj) (14b)

where ρj(Yc, σ
2, λj) is the marginal inclusion probability given Yc, σ

2, λj (7b). For a matrix

X (at observed or new data points), RB estimates for model averaging of Xβ are given by

Ê
RB

(βj | Yo) =
1

K

K∑

k=1

ρj(Y
(k)

c
, σ2 (k), λj)

δj

δj + λj

β̂
(k)
j (14c)

Ê
RB

(Xβ | Yo) = x0
1

K

K∑

k=1

β̂
(k)
0 +

p∑

j=1

xjÊ
RB

(βj | Yo), (14d)

where β̂
(k)
j is the least squares estimate of βj from the complete data Y

(k)
c , Xc for the kth

iteration.

The RB estimate in (14a) may be used to estimate the posterior model probability for

any model, including those that are not sampled in the MCMC (whose ergodic average is

0). This gives us a simple way of estimating the remaining unsampled posterior mass. Let

ΓK denote the set of unique models in the K draws from the ODA sampler. Because the

estimates of model probabilities given by equation (14a) sum to 1 for the entire model space
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Γ, we can estimate the total posterior probability of unsampled models by

p̂RB(Γ− ΓK | Yo) =
∑

γ∈ Γ−ΓK

p̂RB(γ | Yo) = 1 −
∑

γ∈ΓK

p̂RB(γ | Yo). (15)

RB estimates are commonly believed to reduce the variance over ergodic averages, how-

ever, Liu et al. (1994) and Geyer (1995) show that this is not always true when the depen-

dence in the Markov chain is taken into account. For the two block ODA algorithm, however,

Rao-Blackwellization is guaranteed to result in variance reduction:

Theorem 1. Under the assumption that the Markov chain induced by the ODA sampler has

reached its stationary distribution

var[p̂RB(γ | Yo)] ≤ var[p̂MC(γ | Yo)]

var[p̂RB(γj = 1 | Yo)] ≤ var[p̂MC(γj = 1 | Yo)]

Proof. The ODA algorithm is a 2-component Gibbs sampler with components [γ] and

[Ya, σ2], which is also referred to as “data augmentation”. The proof follows immediately

from Theorem 4.1 of Liu et al. (1994), who show that for such a Gibbs sampler, the RB esti-

mator leads to a reduction in variance compared to the Monte Carlo estimate in estimating

E[t(γ) | Yo] for any scalar function t(γ).

Liu et al. (1994) and Liu (1994) also contrast collapsing and grouping as ways of reducing

Monte Carlo variation and recommend collapsing in general. A collapsed Gibbs sampler re-

sults from integrating out one or more components of a Gibbs sampler analytically. Grouping

or blocking refers to drawing two or more components together from their joint conditional

distribution, rather than drawing them individually from their respective conditional distri-

butions. Because of the conjugate priors for βγ, σ2, the marginal posterior distribution for
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γ is available as

p(γ | Yo) =
p(Yo | γ)p(γ | π)∑

γ∈Γ
p(Yo | γ)p(γ | π)

, where (16)

p(Yo | γ) ∝ |Λγ|
+1/2|XT

oγ
Xoγ + Λγ|

−1/2
(
‖Yo − Xoγβ̃oγ‖

2 + β̃T
oγ

Λγβ̃oγ

)
−

n−1

2

, (17)

|Λγ|
+ is the determinant of the lower positive definite pγ × pγ block of Λγ obtained by

excluding the first row and column, and β̃oγ is the posterior mean of βγ under the observed

data only given by equation (10). As it is not possible to sum over the models in Γ for

large problems, a collapsed Gibbs sampler may be used to draw the components of γ from

the Bernoulli full conditional distributions p(γj | γ(j), Yo), where γ(j) is γ with the jth

component removed. This Gibbs sampler is equivalent to the popular integrated Stochastic

Search Variable Selection (SSVS) algorithm introduced by George and McCulloch (1997) and

may also be viewed as a collapsed Gibbs sampler induced by integrating out Ya and σ2 in the

ODA algorithm. Liu (1994) shows that collapsing reduces the norm of the forward operator

of the Gibbs sampler over that of a grouped Gibbs sampler, although this does not imply

faster convergence or better mixing for non-reversible chains (Liu 1994; Liu et al. 1994).

In general, one must balance computational ease, speed and mixing. By introducing the

missing Ya, σ2, we are able to generate γ in one block, while in the collapsed case, we must

propose each γj conditional on the remaining components. One iteration of the collapsed

Gibbs sampler requires p marginal likelihood evaluations and the solution of equation (10)

to obtain a new model; thus standard implementations 1 of SSVS are computationally more

expensive than a single iteration of ODA, even with the generation of the latent Ya and σ2.

1George and McCulloch (1997) discuss efficient updating under g-priors
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3 Existence and Choice of Augmented Designs

Our goal is to find a matrix Xa given the observed matrix Xo such that XT
c
Xc = XT

o
Xo +

XT
a
Xa = D is diagonal. Furthermore, Xa must be real and XT

a
Xa should be positive

semi-definite (psd), which implies that it has real, non-negative eigenvalues. There is a long

rich history describing conditions on the possible eigenvalues of the sums of two symmetric

(Hermitian) matrices (see Fulton 2000, for a summary and key results). The earliest signif-

icant results are due to Weyl (1912) and may be restated for our purposes in the following

lemma:

Lemma 1. Let A, O and D be three real symmetric matrices of dimension d with ordered

eigenvalues α1 ≥ α2 ≥ . . . ≥ αd, o1 ≥ o2 . . . ≥ od and δ1 ≥ δ2 ≥ . . . δd, respectively. Then for

D = A + O, δi+j−1 ≤ αi + oj whenever i + j − 1 ≤ d.

Given D and XT
o
Xo, the theorem below suggests how we may now construct Xa.

Theorem 2. Let O ≡ XT
o
Xo denote a psd symmetric matrix with ordered eigenvalues

o1 ≥ o2 ≥ · · · ≥ op+1 ≥ 0 and D be a diagonal matrix with elements δ1 ≥ δ2 ≥ · · · ≥ δp+1. If

δi ≥ o1 for 1 ≤ i ≤ p+1, then a real augmented design matrix Xa of dimension (p+1)×(p+1)

always exists.

Proof. As both O and D are symmetric with real eigenvalues, A ≡ D − XT
o
Xo is a real

symmetric matrix with spectral decomposition UαUT for U a (p + 1)× (p + 1) orthogonal

matrix and diagonal matrix α of ordered eigenvalues α1 ≥ α2 ≥ . . . ≥ αp+1. From Lemma 1,

δi+j−1 − oj ≤ αi whenever i + j − 1 ≤ p + 1, thus in order for A to be positive semi-definite,

δi+j−1 ≥ oj for i + j − 1 ≤ p + 1, and in particular for j = 1, δi ≥ o1 for 1 ≤ i ≤ p + 1.

Setting Xa = Uα1/2UT , the symmetric matrix square root of A, ensures that XT
a
Xa ≡ A

is psd and that Xa is real.
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3.1 Choice of D

If δi = o1 for i = 1, . . . , p + 1, then the eigenvalues of XT
a
Xa will be o1 − oi and there will

be r = p + 1 − m non-zero eigenvalues, where m is the number of eigenvalues of O that are

equal to o1. The construction of XT
a
Xa above reduces to a (p + 1)× (p + 1) rank r matrix,

XT
a
Xa =

∑p+1
i=m+1(o1 − oi)uiu

T
i where ui are the eigenvectors of U. If all the eigenvalues of

XT
o
Xo are distinct then this implies XT

a
Xa is of rank p.

Since the columns of Xo have been standardized, the choice of equal diagonal elements

of D, δ = δ1 = . . . = δp+1 is not unreasonable as the columns of Xo are all on the same scale.

Furthermore, this choice leads to the same sample precision for all βγ under the complete

data. In the special case that the original matrix has orthogonal columns, the eigenvalues

oi = no, thus the augmented design under the choice δ = o1 leads to a rank 0 matrix, hence

augmentation is unnecessary.

Large δ increases the column sum of squares for Xc and hence will lead to less Monte

Carlo variation for βγ under the augmented data posterior. However, this also inflates the

column sum of squares of Xa as XT
o
Xo is fixed. As a consequence, the augmented design

points may be large in magnitude in contrast to the observed points, which increases the

leverage of the augmented points.

Theorem 3. Let Xa = Uα1/2UT where UαUT = δI − XT
o
Xo for δ = o1 + ǫ and o1 the

maximum eigenvalue of XT
o
Xo. Then ǫ = 0 minimizes the leverage of the design points in

Xa.

Proof. The leverages under the complete design are the diagonal elements of

Xc(X
T
c
Xc)

−1XT
c

= δ−1




XoX
T
o

XoX
T
a

XaXT
o

XaXT
a




with lower block, δ−1XaXT
a

= δ−1Uα1/2UTUα1/2UT = δ−1UαUT . The leverage for row i
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simplifies to
∑

j(1 − oj/δ)u
2
ij. Since δ ≥ o1, the leverages are minimized for δ = o1.

While ideally we set δ = o1, in practice this choice sometimes leads to computationally

unstable solutions with a small negative value for the smallest eigenvalue of XT
a
Xa. To

ensure that XT
a
Xa is positive definite we use ǫ = 0.001. This definition of D will be

assumed throughout the rest of the paper.

3.2 Invariance

In Theorem 2, we took Xa to be the symmetric square root of D − XT
o
Xo, however,

any matrix square root of D − XT
o
Xo may be used to create an augmented design. We

characterize the possible solutions and show that the distribution of the augmented Ya is

invariant under the choice of square root.

Lemma 2. Let S denote the set of (p + 1)× (p + 1) matrix square roots of A = D−XT
o
Xo

for A > 0 such that for S ∈ S, STS = A. Let Op+1 denote the group of (p + 1) × (p + 1)

orthogonal matrices with group action (·) matrix multiplication. Then any S∗ ∈ S may be

written as S∗ = OS for some O ∈ Op+1 and S in S.

Proof. The orthogonal group “acts” on the left of S (see Eaton 1983, page 186 definition

6.1), that is for all S ∈ S and O1,O2 ∈ Op+1, (O1O2) · S = O1 · (O2 · S) with identity group

element Ip+1, Ip+1 · S = S. Then proposition 6.1 of Eaton (1983) may be used to show that

OS is one-to-one and onto from S to S.

Theorem 4. Let Ya ∼ N(Sβ, σ2I) where S ∈ S, the set of matrix square roots of δI−XT
o
Xo.

Then the distribution of Ya is invariant to the choice of S.

Proof. For O ∈ Op+1, Y ∗

a
≡ OYa

d
= OSβ + Oǫ where ǫ ∼ N(0, σ2I). Since S∗ = OS ∈ S,

Y ∗

a
∼ N(S∗β, σ2I).
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The above result says that if Ya is an augmentation such that Ya ∼ N(Sβ, σ2I), then for

any other matrix square root of δI − XT
o
Xo, say S∗, (where S∗=OS for some O ∈ Op+1),

the corresponding augmentation Y ∗

a
(obtained under left-multiplication by the orthogonal

matrix O) is also normally distributed as N(S∗β, σ2I). Because it is fast to compute, we take

Xa to be the Cholesky decomposition of D−XT
o
Xo for the remainder of the paper. Results

for sensitivity analysis using two other choices of Xa based on singular value decompositions

are reported in the Supplemental Materials. These results suggest that the ODA algorithm

is not sensitive to the choice of Xa.

4 Simulation Study

We compare ODA and other MCMC samplers for data generated using the simulation design

in Nott and Kohn (2005) (similar to Raftery et al. (1997); Fernández et al. (2001)) with a

sample size n = 50 and 15 predictors. The first column of the design matrix X is a column

of ones and the next 10 columns, x1, . . . , x10, are generated as independent N(0, 1) vari-

ables. The last 5 columns, x11, . . . , x15 depend on the first five predictors [x11, . . . , x15] =

[x1, . . . , x5] (0.3, 0.5, 0.7, 0.9, 1.1)T (1, 1, 1, 1, 1)+E where E is a 50×5 matrix of independent

N(0, 1) random variables. This induces strong correlations among the last five variables and

moderate correlations between them and the first five predictors. Given X, the response vari-

able is generated as Yo = Xβ∗ + ǫ, where β∗ = (4, 2, 0, 0, 0,−1, 0, 1.5, 0, 0, 0, 1, 0, 0.5, 0, 0)T

and ǫ ∼ N(0, 2.52 I).

With 15 predictors and conjugate prior distributions, the model space of 215 = 32, 768

possible models may be enumerated easily to provide the true posterior distribution under

model averaging. For all methods we use a design matrix Xo obtained by standardizing X as

described in Section 2 and set λj = 1 in the Gaussian prior distribution for the coefficients

in (5b). If the predictors were uncorrelated, this choice would be equivalent to a unit-
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information prior (Kass and Raftery 1995). To complete the prior specification, we take

πj = 1/2 corresponding to an uniform prior distribution on the model space.

We compare ODA with two alternative MCMC algorithms. The first is SSVS, which

is a collapsed version of ODA, described previously. Because the SSVS algorithm and the

related MC3 algorithm of Raftery et al. (1997) utilize one component at a time updates,

high correlation among predictors may make it difficult to escape local modes, leading to

poor mixing in practice. To improve mixing, we use a Metropolis-Hastings algorithm based

on a mixture kernel that randomly selects a γj and switches γj to 1 − γj thus adding or

deleting a variable as in the MC3 proposal (Raftery et al. 1997), combined with a random

swap proposal that randomly exchanges a predictor in the current model with one that is

not. This simple random swap (RS) algorithm greatly aids in escaping local modes (Denison

et al. 1998; Nott and Green 2004; Clyde et al. 2010) and often performs as well as the more

complicated Swendsen-Wang method of Nott and Green (2004). All MCMC methods utilize

the same likelihood for the observed data and prior distributions given above for ODA, so

that all methods should provide samples from the same target distribution.

For SSVS and RS we compute estimates of posterior model probabilities and inclusion

probabilities based on i) Monte Carlo frequencies of visits to models (MC) and ii) marginal

likelihoods of the unique models in the sample renormalized (RM) over the set of unique

sampled models (ΓK),

p̂RM(γ | Yo) =
p(Yo | γ)p(γ)∑

γ∈ΓK
p(Yo | γ)p(γ)

I(γ ∈ ΓK), p̂RM(γj = 1) =
∑

γ∈ΓK

γj p̂RM(γ | Yo). (18)

4.1 Comparisons of Algorithms and Estimators

We compared the three algorithms based on a fixed running time as a single “iteration” of

each of the samplers is not equivalent: ODA updates γ as one block with a much simpler

full conditional, but requires the generation of the p + 1 dimensional vector Ya and the
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scalar σ2; one iteration of SSVS cycles through the p components of γ with p marginal

likelihood evaluations for the full conditionals; RS changes one or two components of γ and

requires a single marginal likelihood evaluation in the Metropolis-Hastings ratio. Running

each algorithm for one hour2 results in 450,000, 46,667, and 700,000 iterations for ODA,

SSVS, and RS, respectively; all simulations were done in R on a Dell workstation with 8 3.2

GHz Intel Xeon CPUs. Ideally one should run MCMC algorithms long enough to ensure

convergence of model probabilities and marginal inclusion probabilities, however, this would

require the number of MCMC iterations to be much more than the size of the model space.

As this is computationally prohibitive for large model spaces, the typical number of draws is

only a small fraction of the dimension of the model space. To reproduce such a scenario but

where we can still evaluate the exact posterior distribution, we also run the algorithms for

one minute, resulting in 6,400, 667, and 10,000 draws (19.5%, 2%, 30.5% of the model space)

for ODA, SSVS and RS, respectively. For comparison, enumeration of the model space took

2.7 minutes. To compare how well the different estimators and algorithms estimate model

probabilities and inclusion probabilities, we use MSE = ‖p̂ − p‖2/d where p̂ is an estimate

of the vector of probabilities, p is the value obtained under enumeration of the model space,

and d is the length of the vector, d = 2p for the model probabilities and d = p for inclusion

probabilities. For each method, we ran the MCMC algorithm 100 times with random starting

values, and computed the average MSE, taking the mean over the 100 runs (Table 1).

The results in Table 1 indicate that the Monte Carlo estimates from ODA are better

than MC estimates from the other algorithms for the same running time. Likewise using the

renormalized marginal likelihoods (RM) is best under the ODA chain. The root MSE results

show that even within the short run we may estimate inclusion probabilities within plus or

minus 0.02 under ODA RB. The Rao-Blackwellization leads to a reduction in MSE over the

MC estimates for both short and long runs, as the theory suggests, however, the renormalized

2All algorithms were programmed in native R
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Square Root Average MSE Short Runs Long Runs Short Runs Long Runs
Incl. Prob. Incl. Prob. Model Prob. Model Prob.

(×100) (×100) (×104) (×104)

ODA MC 1.28 0.15 0.83 0.09
ODA RB 1.11 0.13 0.39 0.05
ODA RM 2.43 0.12 0.66 0.02

SSVS MC 1.98 0.23 2.32 0.27
SSVS RM 6.48 0.73 3.22 0.14

RS MC 2.03 0.24 1.42 0.17
RS RM 3.02 0.14 0.92 0.02

Table 1: Nott-Kohn simulation example: Comparison of square root of the average mean
squared error for estimation of the 15 posterior inclusion probabilities (Incl. Prob.) and
215 posterior model probabilities (Model Prob.) using Monte Carlo frequencies (MC), Rao-
Blackwellized (RB) and renormalized marginal likelihoods (RM) under short runs (1 minute)
and long runs (1 hour) of each of the ODA, SSVS, and RS algorithms. The calculations are
based on 100 replicates of each algorithm.

estimates are better only in the long runs. As the RM estimates are Fisher consistent (they

equal the true value when the population is enumerated), the MSE goes to zero as the

number of unique models converges to |Γ|. The long runs of ODA, SSVS, and RS sample

8484, 4018 and 8274 unique models (on average), corresponding to 99.5, 96.27, and 99.4% of

the posterior mass (respectively). However, for the short runs ODA, SSVS and RS sample

84.9, 52.1, and 80.2% of the mass, respectively, and the superior performance of the RM

estimates of inclusion probabilities is diminished over the MC estimates for all algorithms.

These results confirm those in Clyde and Ghosh (2010), who show that renormalization may

result in larger MSE over MC estimates when the number of iterations is small relative to

the model space, because of the inherent bias in RM estimators. As ODA RB has better

performance compared to MC and RM in the short runs, this should provide improved

estimates for non-enumerable model spaces where a smaller fraction of the posterior mass

is sampled. We now turn to estimation of the unsampled mass, which may provide some

guidance when ODA RB is preferable to ODA RM and whether one should continue running
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the MCMC.

4.2 Estimation of Unsampled Posterior Mass

We can use the RB estimate in (15) to estimate the remaining posterior mass for the

Nott-Kohn simulations and compare them to the exact value under enumeration. Using

a short preliminary sample from the MCMC, George and McCulloch (1997) constructed an

estimate of the normalizing constant C, for the posterior distribution of γ given in (16),

p(γ | Yo) = Cp(Yo | γ)p(γ | π), which in turn leads to an estimate of the unsampled

mass. We found that the average bias was negligible for both estimators, although the

George and McCulloch estimator exhibits much greater run-to-run variability (See Figure 1

in Supplemental Materials).

This ODA estimate of unsampled mass exhibits a slight tendency towards underestima-

tion; a possible explanation is included in the Supplemental Materials. Although the bias

is negligible, we provide two alternatives to correct it. One option is to run an independent

Markov chain, and calculate the estimate in equation (15), based on (Ya, σ2) generated from

this new chain. We refer to this unbiased estimate as the Independent Rao-Blackwellized

(IRB) estimate. Another approach that does not require additional simulation is to split

randomly the MCMC samples from the original chain into two halves. The collection of

(Ya, σ2) from the first half can be used to estimate the probabilities of models from the

second half and vice-versa; adding the two estimates provides an estimate of the sampled

mass from the entire chain, which is then subtracted from one to estimate the remaining

mass. We call this the Rao-Blackwell Split (RB-Split) estimate. The Supplemental Materi-

als contain an expanded version of this section with a detailed comparison of all estimators.

Among the methods, IRB is the best, but at the expense of running a second independent

chain. As a compromise that reduces bias, but does not increase computational complexity,

we recommend the RB Split method.
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A key feature of the ODA method for estimating probabilities is that it does not require

the marginal likelihoods to be available in closed form unlike the method of George and

McCulloch (1997) to provide estimates of the unsampled mass. For enumerable problems

where marginal likelihoods are not available in closed form, ODA clearly has an advantage

in estimating not only the unsampled probability but also model probabilities for all models,

as we illustrate in Section 7. We first show how to extend the method to allow alternatives

to Gaussian prior distributions, another important example where marginal likelihoods are

not available.

5 ODA with Scale Mixtures of Normals

Normal prior distributions on the non-zero coefficients as in (5b) have been widely used for

Bayesian variable selection, as the conjugate prior permits tractable marginal likelihoods used

by collapsed MCMC algorithms that sample only from the model space. While normal priors

are appealing from a computational perspective, Jeffreys (1961) rejected the normal prior

for hypothesis testing of a mean from a single normal population and recommended Cauchy

priors instead. There are two potential problems with Gaussian prior distributions. First,

posterior probabilities are sensitive to the prior variance, where large variances may lead to

false rejection of the hypothesis that the coefficient is non-zero, the well known “Lindley’s”

or “Bartlett’s” paradox. Second, the normal prior does not have bounded influence, thus

even as the t statistic increases to infinity, the prior mean of zero exerts influence on the

marginal likelihood so that Bayes factors in favor of the alternative do not go to infinity but

are instead bounded. The lack of bounded influence also affects the posterior mean, as the

linear shrinkage of the sample mean is independent of the data. Liang et al. (2008) show

that these problems arise in the regression context using the normal g-prior (Zellner 1986)

and prove that scale mixtures of Zellner’s g-prior, obtained by placing a prior distribution
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on g resolve these problems. These mixtures of g-priors are multivariate priors with the

same prior correlation structure as in the observed data, which may not be desirable in the

presence of multicollinearity. In the orthogonal wavelet setting, Clyde and George (2000)

use scale mixtures of independent normal distributions for both error distributions as well

as wavelet coefficients, which provides both robustness to using a prior mean of zero and

robustness to outliers in the data. Johnstone and Silverman (2004, 2005) also demonstrate

the superior performance of mixtures of a point mass and heavy-tailed prior distributions

compared to mixtures of a point mass and Gaussian prior distributions. Scale mixtures of

normal distributions have also seen a resurgence of interest for shrinkage estimators (priors

with no explicit probability at zero) (Carvalho et al. 2010; Polson and Scott 2010) where

MAP estimates are easy to obtain. These scale mixtures may be easily incorporated in the

ODA algorithm by placing a prior distribution on the λj in (5b), leading to heavy-tailed prior

distributions like the Cauchy, Student-t, double exponential, or horseshoe for the non-zero

regression coefficients. We illustrate the algorithm for Cauchy prior distributions below.

5.1 ODA for Cauchy Prior Distributions

We add another layer of hierarchy to the normal prior in (5b):

λj
iid
∼ G(α/2, α/2) j = 1, . . . , p, (19)

which leads to a marginal distribution for βj given γj and σ2 that is Student-t with location

and scale parameters 0 and σ2, and α degrees of freedom. In particular, the choice α = 1

corresponds to βj | γj, σ
2 iid
∼ C(0, σ2γj). Collapsing over γj, the prior distribution for βj

is a mixture of a point mass at zero and a Cauchy distribution, a robust version of the

“spike-and-slab” prior.

With Cauchy prior distributions, marginal likelihoods may no longer be expressed in
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closed form and hence explicit expressions for posterior probabilities even where enumeration

is feasible do not exist. We may add a step to sample the λj ’s, leading to the following ODA-

Cauchy algorithm. For the complete data model in (4) and prior distributions in (5a-5c),

(6) and (19) generate σ2, Ya, γ and λ from the following sequence of distributions:

1. (σ2, Ya) | γ, λ, Yo from equations (9a - 9b)

2. γj | Yc, σ
2, λ for j = 1, . . . , p from equation (9c)

3. βj | Yc, σ
2, γ, λ

ind
∼ N

(
β̂jγj

δj

λj+δj
, σ2γj(λj + δj)

−1
)

where β̂j = xc
T
j Yc/xc

T
j xcj for j =

1, 2, . . . p

4. λj | Yc, σ
2, γ, βj

ind
∼ G

(
α+γj

2
,

α+γjβ2

j /σ2

2

)
for j = 1, 2, . . . p

Note, the full conditional distribution of the scale parameter vector, λ, is not available in

closed form when β is integrated out and hence we draw βj in step 3 to facilitate the drawing

of λ, but integrate out β from steps 1 and 2 in order to exploit the collapsed structure of the

original ODA algorithm. We give a proof in the supplemental materials that the stationary

distribution for this ODA sampler is the desired posterior distribution of (σ2, Ya, γ, λ). The

RB estimates for ODA-Cauchy are obtained by averaging over the K draws of Ya, σ2 and λ.

5.2 Comparison of Different Prior Distributions

In this section we use the Nott-Kohn simulations to compare the performance of model av-

eraging with ODA-Cauchy (ODA with independent Cauchy priors) and ODA-Normal (ODA

with normal priors) for parameter estimation under squared error loss. In addition, we com-

pare the independent priors in ODA to BMA using the multivariate g-prior (Zellner 1984)

with g = no (a unit-information prior), the multivariate Zellner-Siow (Zellner and Siow 1980)

Cauchy prior distribution, and BMA using BIC to approximate model probabilities. The
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latter three estimates were computed under enumeration of the model space using the R

package BAS on CRAN (Clyde 2010).

We generate 100 simulated datasets for the Nott-Kohn example and compare the different

prior distributions based on their sum of squared errors (SSE) in estimating β, SSE =

∑p
j=1(βj − β̃j)

2, where βj is specified in Section 4 and β̃j is the BMA estimate of βj. BAS is

a sampling without replacement algorithm that is guaranteed to enumerate the model space

for number of predictors less than 20-25 (Clyde et al. 2010). As the number of predictors is 15,

we ran BAS for 215 iterations for enumeration, providing exact posterior means under BMA

for the g-prior. BAS uses a one-dimensional Laplace approximation to calculate the marginal

likelihood for Zellner-Siow prior (Liang et al. 2008). ODA-Cauchy and ODA-Normal are run

for 215 iterations after discarding a burn-in of 5,000. CPU times for running ODA and BAS

are not directly comparable currently as ODA is written currently in interpreted R code,

while the sampling algorithm in the BAS package is written in C/FORTRAN and makes

extensive use of the BLAS library. We plan to make an R package available and will recode

in C/Fortran to speed up the calculations and expect that “an iteration” of ODA to be close

to that of the BAS package as both algorithms require calculation of the OLS estimates, and

use independent Bernoulli distributions to generate models. Currently for each of the 100

simulated datasets, ODA takes around 5 minutes, whereas the other prior distributions take

around 0.2-0.3 seconds using the package BAS.

For each simulated dataset, we identified the algorithm that had the smallest SSE,

and computed the relative efficiency of each algorithm to the one with the minimum SSE,

EFF(algorithmk) = SSE(algorithmk)/min(SSE). Boxplots of the relative efficiencies are shown

in Figure 1. ODA-normal and ODA-Cauchy have boxplots that are most concentrated

around one, indicating that they are often producing the smallest SSE, and at other times

performing almost as well as the prior with the smallest SSE. For this simulation study, there

is little difference among Zellner’s g−prior and the Zellner-Siow Cauchy prior. Similarly the
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Figure 1: Boxplots of relative efficiency (SSE(algorithm k)/min(SSE) for each simulated data
set) for the Nott-Kohn simulation study for BIC, g-prior, Zellner-Siow Multivariate Cauchy
prior, Independent Cauchy, Independent Normal

results for the independent normal and Cauchy priors based on ODA are very close, thus

most of the gain is from the generalized ridge estimates based on the independent prior

used in ODA. The mean SSE calculated over 100 replicates for ODA-Normal, ODA-Cauchy,

Zellner-Siow, g-prior, and BIC are 2.08, 2.09, 2.34, 2.40, and 2.48 respectively.

6 Example: Ozone Data

We illustrate the performance of ODA using the ozone data (Friedman and Silverman 1989).

There are 330 observations and 8 meteorological variables, where the response variable is

ground level ozone in Los Angeles. Considering the same second order interactions and

square terms, as in Liang et al. (2008), there are 44 predictors in all, leading to a model

space of 244 models.

For ODA-Normal we may calculate the exact marginal likelihoods of the sampled models,

which provides a diagnostic to check convergence for posterior model probabilities. We run
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ODA-Normal for one million iterations and discard the first 200,000 as burn-in. For model

spaces as large as this one, most of the MC estimates of model probabilities are around

1/K, where K is the number of MCMC iterations. Figure 2 highlights this problem and

contrasts the true marginal likelihoods with their RB and MC estimates. Ideally the points

should be tightly clustered around the 45◦ line. While RB offers an improvement over

the MC estimates, RB also exhibits considerable Monte Carlo variation. This example

illustrates the difficulty of estimating model probabilities in higher dimensions, which is still

an open problem. In problems like this, we do not advocate using the RB estimates of model

probabilities for selecting the highest probability model or a set of top models. The ODA

algorithm is still useful for implementing BMA with heavy-tailed prior distributions in large

model spaces as this one, and provides reliable estimates of marginal inclusion probabilities

for variable selection or predictions under BMA.
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Figure 2: Comparison of Rao-Blackwellized (RB) and Monte Carlo (MC) estimates of (renor-
malized) marginal likelihoods of top 1,000 models for the ozone data for ODA-Normal with
1 million iterations.
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We explore the predictive performance of the ODA method with normal and Cauchy

prior distributions. Following Liang et al. (2008), we leave out a randomly chosen half of the

data as training data and predict the ozone concentration for the remaining half (n∗ = no/2)

using BMA estimates for ODA-Normal and ODA-Cauchy. For comparison we also include

BMA predictions under the g-prior (with g = no/2) and the Zellner-Siow prior using the R

package BAS, the lasso (Tibshirani 1996; Efron et al. 2004) using the R package lars (Hastie

and Efron 2007) and the Bayesian Horseshoe (Carvalho et al. 2010) using the R package

monomvn (Gramacy 2010). The penalty in the lasso may be viewed as the log of a double

exponential prior, which is a scale mixture of normals, while the horseshoe prior is yet another

scale mixture of normals. While both result in nonlinear shrinkage rules, neither include a

mixture component that puts positive probability on zero. We compare methods on the basis

of the predictive root mean square error (RMSE) defined as
√∑n∗

i=1(Yi − Ŷi)2/(n∗) where

Y1, . . . Yn∗ are the response variables in the randomly selected test sample and Ŷi is the BMA

estimate of Yi.

We run the ODA algorithms for 215 iterations after discarding a 5,000 burn-in and run

BAS for 215 + 5000 iterations. Empirically, predictions under model averaging appear to

converge faster than model probabilities in these large spaces, thus we use a shorter MCMC

run. The entire procedure is repeated 10 times to have 10 different sets of training and test

samples. The resulting RMSE from different prior distributions (and algorithms) are quite

similar, with the between sample variation dominating. As before the best methods are

ODA, with root average MSE (RAMSE) of 4.098 for ODA-Cauchy, 4.102 for ODA-Normal,

4.131 for horseshoe, 4.153 for lasso and 4.168 for both the Zellner g-prior and Zellner-Siow

priors. Overall, the ODA methods are competitive with some of the best available methods.
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7 Probit Regression

We now show how to extend the ODA framework to binary regression models. Letting Zo

denote the binary response variable of length no, a probit regression model may be expressed

as

P (Zoi = 1 | xγi, βγ, γ) = Φ(xT
γiβγ), i = 1, 2, . . . , no (20)

where Φ is the normal cumulative distribution function (cdf). Using the method of Albert

and Chib (1993), one can augment the observed data {Zo, Xo} by latent data Yo such that:

Yoi | βγ

ind
∼ N(xT

γiβγ, 1) (21)

where Zoi = 1(Yoi>0). Using the prior specifications given in (5b) with σ2 = 1 and λj =

1 for j = 1, . . . , p and (6), we can construct the ODA-Probit sampler, described in the

Supplemental Materials.

To illustrate the application of the ODA-Probit algorithm, we use the Pima Indians

Diabetes dataset available in the MASS library in R. The response variable is an indicator

of whether or not the women had diabetes according to World Health Organization criteria.

There are seven explanatory variables: npreg, glu, bp, skin, bmi, ped and age. We provide

a variable key in the Supplemental Materials.

We run ten ODA-Probit chains for 300,000 iterations after a burn-in of 5,000, with

random starting values. On average, 39 (±1) unique models were sampled, with an estimate

of the remaining mass of 1.2× 10−5 (range 2.2× 10−6 − 1.9× 10−5 over the 10 chains), using

the RB-split estimate. Inclusion probabilities were stable over the 10 runs, with estimates

of marginal inclusion probabilities p(γnpreg = 1) = 0.947, (sd = 0.002), p(γglu = 1) = 1.000

(sd = 1.254 × 10−29), p(γbp = 1) = 0.075 (sd = 0.0002), p(γskin = 1) = 0.099 (sd = 0.001),

p(γbmi = 1) = 0.997 (sd = 0.0004), p(γped = 1) = 0.969 (sd = 0.001), and p(γage = 1) = 0.389
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(sd = 0.003). For generalized linear models, analytic expressions for marginal likelihoods

are not available in closed form; thus even for an enumerable model space of dimension

27, there is no way of obtaining closed form expressions for true model probabilities or

marginal inclusion probabilities. Here we can enumerate all 27 models and estimate the

model probabilities using the ODA RB estimates for any model. We observe that npreg, glu,

bmi and ped are identified as important covariates, which were also flagged as important

in a paper by Holmes and Held (2006). Although their prior distribution for β is slightly

different from ours, Holmes and Held (2006) reported the inclusion probability for age was

0.129, suggesting doubt about the importance of age, while Ripley (1996) found that the best

AIC model included age, dropping only bp and skin. Looking more closely at the distribution

of ρRB
age from one of the chains, we found that it is highly bimodal, with support near zero

and one. Images of the model space show that age is actually included in 2 out of the top 4

models (Figure 3), with the highest probability model under ODA-Probit corresponding to

the second best model in terms of AIC and the best AIC model corresponding to the second

highest posterior probability model. The Bayes factor for comparing the top two models

is 1.11, suggesting that these two models receive similar support from the data. In this

case, model averaging may be preferable to model selection. Splitting the data as in Ripley

(1996), and refitting the ODA-Probit model with the 200 training observations to predict

for the remaining 332, we find that the misclassification rate under ODA-Probit with model

averaging is 18.7 %, which is better than the highest probability model under ODA-Probit

(19.4%), the best AIC model (19.9%) or the best BIC model (20.2%).

8 Discussion

In the majority of problems outside Gaussian regression with conjugate prior distribu-

tions, the marginal likelihood of models and hence model probabilities are not analytically
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Figure 3: Top 20 models for the Pima Indians Diabetes data. Each row corresponds to
a model, with the highest probability model at the top, and each column corresponds to
a variable, with black regions indicating variables that are excluded from the model. The
y-axis is the log Bayes factor for comparing each model to the 20th best model out of all (27)
models. Log Bayes factors for comparing any other two models may be found by subtraction.

tractable, even for relatively small model spaces. The orthogonal data augmentation al-

gorithm provides Rao-Blackwellized estimates of model probabilities, inclusion probabilities

and predictions which provide improvements over current algorithms with normal priors, but

more importantly allow one to consider more robust prior specifications, such as indepen-

dent Cauchy priors. For linear regression ODA-Cauchy provides results that are equivalent

or better than the “gold-standard” Zellner-Siow Cauchy prior, lasso or horseshoe. The ODA

algorithm for probit regression provides Rao-Blackwellized estimates of model probabilities

and inclusion probabilities so that one does not have to rely on asymptotic approximations,

such as BIC, for model probabilities.

There are several extensions of the current method that are possible. For illustration

purposes, we have used a fixed uniform prior on the model space throughout; this assumption

may be relaxed by placing a prior distribution, for example a Beta distribution, on πj and

updating πj from its full conditional. The restriction to independent priors on the βj may also

be relaxed. For normal and mixture of normal prior distributions for βγ that are obtained

from the distribution of coefficients in the full model and conditioning on a subset of β being
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equal to zero (conditionally compatible priors such as the g-prior or Zellner-Siow Cauchy

prior), we may incorporate the prior precision Φ in the solution of of the augmented design

XT
o
Xo + XT

a
Xa + Φ = D. For mixtures of g-priors, Φ = g−1XT

o
Xo, so this would lead to

updating XT
a
Xa after sampling g. Similarly for the p > n case, the incorporating the prior

precision into the solution for Xa will lead to a full rank solution.

Data-augmentation with parameter expansion has been shown to improve convergence in

many cases (Liu and Wu 1999; Meng and van Dyk 1999; Hobert and Marchev 2008). We ex-

perimented with several parameter expansion schemes based on scale changes for the latent

data (not reported here), but did not see any improvement. Liu and Wu (1999) suggest that

if the set of transformation forms a locally compact group and the prior on the expansion

parameter corresponds to Haar measure, that there is a well defined parameter expansion

algorithm that is optimal in terms of convergence. For ODA a natural choice that preserves

the invariance of the augmented data is to consider the group of orthogonal rotations Op+1

as the expansion parameter. Generating random orthogonal matrices, however, will increase

computational complexity of the algorithm; standard algorithms for generating orthogonal

matrices are of order O(p3) although Genz (1998) describes methods using butterfly ma-

trices that are of order O(log(p)p2). It remains to be seen if improvements in convergence

offset computational requirements, however, by allowing the augmented design matrix to be

random, we may be able to further reduce the leverage of the augmented cases.
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