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KlUver: We wish to stress ... one point, namely, that under
diverse conditions the visual system responds in terms of a

limited number of form constants.
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Planar Symmetry-Breaking

- N

# Euclidean symmetry: translations, rotations, reflections

» Symmetry-breaking from translation invariant state in
planar systems with Euclidean symmetry leads to

» Stripes:
States invariant under translation in one direction

» Spots:

States centered at lattice points

—n. 2/32



Sand Dunes in Namibian Desert
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Outline

. Geometric Visual Hallucinations

. Structure of Visual Cortex

Hubel and Wiesel hypercolumns; local and lateral
connections; isotropy versus anisotropy

. Pattern Formation in V1

Symmetry; Three models

. Interpretation of Patterns in Retinal Coordinates
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Visual Hallucinations

- N

# Drug uniformly forces activation of cortical cells
#® Leads to spontaneous pattern formation on cortex

# Map from V1 to retina;
translates pattern on cortex to visual image
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Visual Hallucinations

-

Drug uniformly forces activation of cortical cells
Leads to spontaneous pattern formation on cortex

Map from V1 to retina;
translates pattern on cortex to visual image

Patterns fall into four form constants (KlUver, 1928)

e tunnels and funnels
e Spirals
e |attices includes |honeycombs and phosphenes
e cobwebs
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Funnels and Spirals
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Lattices: Honeycombs & Phosphenes




Cobwebs




Orientation Sensitivity of Cells in V1
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#® Most V1 cells sensitive to orientation of contrast edge

Distribution of orientation preferences in Macaque V1 (Blasdel)

# Hubel and Wiesel, 1974
Each millimeter there is a hypercolumn consisting of
L orientation sensitive cells in every direction preference J
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Structure of Primary Visual Cortex (V1)

- N

V1 lateral connections: Macaque (left, Blasdel) and Tree Shrew (right, Fitzpatrick)

# Two kinds of coupling: local and lateral

(a) local: cells < 1mm connect with most neighbors

(b) lateral: cells make contact each mm along axons,;
\_ connections in direction of cell’s preference J
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Anisotropy In Lateral Coupling

| ® Macaque: most anisotropy—‘
due to stretching in

direction orthogonal to

ocular dominance

columns. Anisotropy is

weak.
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Anisotropy In Lateral Coupling

| ® Macaque: most anisotropy—‘
due to stretching in

direction orthogonal to

ocular dominance

columns. Anisotropy is

weak.

Tree shrew: anisotropy
pronounced
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Action of Euclidean Group: Anisotropy

-
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Action of Euclidean Group: Anisotropy

D | ® Abstract physical space of
V1is R? x S’ — not R?
Hypercolumn becomes
circle of orientations

Ve
DO

D

eteral connections o Euclidean group on R?:
) translations, rotations,
reflections

hypercolumn

©
oe
YA

DO

# Euclidean groups acts
on R? x S' by

Ty($790) — (Ty@’»@)
Ry(z,p) = (Roz,o+0)

L /f(:z:,gp) — (/{LB,—@) J
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Isotropic Lateral Connections

local connections
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Isotropic Lateral Connections
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# New O(2) symmetry

A

o(x,p) =

» Weak anisotropy
forced symmetry
breaking of

E(2)+0(2)

(2, + @)

IS

L E(2)
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Three Models

f # E(2) acting on R? (Ermentrout-Cowan) T
neurons located at each point z

Activity variable: a(x) = voltage potential of neuron
Pattern given by threshold a(x) > vg
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Three Models

f.’ E(2) acting on R? (Ermentrout-Cowan) T
neurons located at each point z
Activity variable: a(x) = voltage potential of neuron
Pattern given by threshold a(x) > vg

# Shift-twist action of E(2) on R? x S! (Bressloff-Cowan)
hypercolumns located at =; neurons tuned to ¢
strongly anisotropic lateral connections
Activity variable: a(x, )

Pattern given by winner-take-all
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Three Models

f.’ E(2) acting on R? (Ermentrout-Cowan) T
neurons located at each point z
Activity variable: a(x) = voltage potential of neuron
Pattern given by threshold a(x) > vg

# Shift-twist action of E(2) on R? x S! (Bressloff-Cowan)
hypercolumns located at =; neurons tuned to ¢
strongly anisotropic lateral connections
Activity variable: a(x, )

Pattern given by winner-take-all

o Symmetry breaking: E(2)+0(2) — E(2)
weakly anisotropic lateral coupling
Activity variable: a(x, )
L Pattern given by winner-take-all J
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Planforms For Ermentrout-Cowan

ﬁ Threshold Patterns _‘
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L Hexagonal lattice: strlpes and hexagons J
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Winner-Take-All Strategy
¢

reation of Line Fields

# Given: Activity a(x, ¢) of neuron in hypercolumn at x
sensitive to direction ¢

# Assumption: Most active neuron in hypercolumn
suppresses other neurons in hypercolumn

# Consequence: For all x find direction ¢, where activity
IS maximum

# Planform: Line segment at each x oriented at angle ¢y

o |
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0o(2)0 Z4 - Orolls

0o(2)0 Z2 - Erolls

Planforms For Bressloff-Cowan
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Cortex to Retina

Neurons on cortex are uniformly distributed
Neurons in retina fall off by 1/r* from fovea

Unique angle preserving map takes uniform density
square to 1/r2? density disk: complex exponential

Straight lines on cortex —
circles, logarithmic spirals, and rays in retina
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Visual Hallucinations

(1) (V)

() funnel and (ll) spiral images LSD [Siegel & Jarvik, 1975], (lll) honeycomb marihuana
[Clottes & Lewis-Williams (1998)], (IV) cobweb petroglyph [Patterson, 1992]
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Planforms in the Visual Field
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(a) (b)

(c) (d)

Visual field planforms
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Weakly Anisotropic Coupling
-

In addition to equilibria found in Bressloff-Cowan
model there exist periodic solutions that emanate
from steady-state bifurcation

. Rotating |Spirals

. Tunneling Blobs Tunneling Spiraling Blobs

. Pulsating Blobs
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Pattern Formation Outline
- -

1. Bifurcation Theory with Symmetry

# Equivariant Branching Lemma
# Model independent analysis

2. Translations lead to plane waves

3. Planforms: Computation of eigenfunctions
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Primer on Steady-State Bifurcation

- N

® Solve &= f(x,\)=0 where f:R" xR —R"
# |ocal theory: Assume f(0,0) = 0 & find solns near (0, 0)

® If L =(d.f)oo nonsingular, IFT implies unique soln x(\)



Primer on Steady-State Bifurcation

-

® Solve &= f(x,\)=0 where f:R" xR —R"

# |ocal theory: Assume f(0,0) = 0 & find solns near (0, 0)
® If L =(d.f)oo nonsingular, IFT implies unique soln x(\)
# Bifurcation of steady states <= ker L # {0}

# Reduction theory implies that steady-states are found
by solving ¢(y, A) = 0 where

@ :ker L x R — ker L
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Equivariant Steady-State Bifurcation
- -

Let v : R™ — R" be linear

® ~is a symmetry iff v(soln)=soln iff f(yz, ) =~ f(xz, \)
# Chainrule — L~ = vL = ker L IS ~-Invariant

# Theorem: Fix symmetry group I'. Generically
ker L Is an absolutely irreducible representation of T

# Reduction implies that there is a unique steady-state
bifurcation theory for each absolutely irreducible rep

o |
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Equivariant Bifurcation Theory

-

Let > C I" be a subgroup
Fix(X)={zx €kerL:ox=x Voe€X}
> Is axial 1If dimFix(¥) =1

Equivariant Branching Lemma:

Generically, there exists a branch of solutions with >, symmetry
for every axial subgroup X

MODEL INDEPENDENT

Solution types do not depend on the equation — only
on the symmetry group and its representation on ker L
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Translations

o Let Wy, = {u(p)e®* +cc.} ke R?=wave vector

# Translations act on 11/, by

Ty (u(p)e™>) = u(p)ek xHy) = {eik-yu(v)} kX

® LWy —- Wy

Eigenfunctions of L have plane wave factors
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Reflections

-

#® Choose REFLECTION p sothat pk=k

p (lp)e™™) = pule))e™™

S0,0:Wk—>Wk



Reflections

-

#® Choose REFLECTION p sothat pk=k

p (l@)e™™) = plulp))e™™
So o Wyx — Wy

® p? =1implies
Wi =W, @ W,

where pactsas +lon1/,” and —1lonV/_
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Reflections

#® Choose REFLECTION p sothat pk=k

p (l@)e™™) = plulp))e™™
So o Wyx — Wy

® p? =1implies
Wi =W, @& W,

where pactsas +lon1/,” and —1lonV/_
# Eigenfunctions are even or odd. When k = (1, 0)

u(=p) = ulp)  we W]
| ul~p) = —ulp) weWy
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Rotations

-

# Rotations act on spaces Wy

Ry (u()e™>) = Ro(u(g))e 00

Therefore
Ro(Wx) = Wryx)

Therefore ker L IS co-dimensional

—n. 29/32



Rotations

- N

® Rotations act on Spaces Wi
Ro (u(p)e™™) = Ro(u(p))e 09

Therefore
Ro(Wx) = Wryx)

Therefore ker L IS co-dimensional
® Double-periodicity: Look for solutions on planar lattice

Fe={feF : fx+4£=[f(x) VLeL}
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Rotations

Rotations act on spaces Wy

Ry (u()e™>) = Ro(u(g))e 00

Therefore
Ro(Wx) = Wryx)

Therefore ker L IS co-dimensional
Double-periodicity: Look for solutions on planar lattice

Fe={feF : fx+4£=[f(x) VLeL}

Finite number of rotations: ker L Is finite-dimensional

|
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L I

Rotations

Rotations act on spaces Wy

Ro (u(p)e™) = Rofu(ip))e 00
Therefore
Ro(Wx) = Wryx)

Therefore ker L IS co-dimensional
Double-periodicity: Look for solutions on planar lattice

Fe={feF : fx+4£=[f(x) VLeL}

Finite number of rotations: ker L Is finite-dimensional
Choose lattice size so shortest dual vectors are critical

|
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Axials in Ermentrout-Cowan Model

- N

Name Planform Eigenfunction
stripes COS
squares COS T + Ccos Y
hexagons | cos(kg - x) + cos(k; - x) + cos(ks - x)

ko=(10)  ki=3-1v3) ke=3i(-1-V3)



Axials Iin Bressloff-Cowan Model

Name Planform Eigenfunction u
squares u(p)cosz +u (o — ) cosy even
stripes u(p) cos even
hexagons > ou (e — jm/3) cos(k; - x) even
square u(p)cosz —u (¢ — ) cosy odd
stripes u(yp) cos odd
hexagons Z?:o u (o — jm/3) cos(k; - x) odd
triangles Z?:o u (@ — gm/3)sin(k; - x) odd
rectangles | u (¢ — %) cos(ki -x) —u (p+ %) cos(ks - x) | odd
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How to Find Amplitude Function u(y)
- -

# [sotropic connections imply EXTRA O(2) symmetry
#® O(2) decomposes Wy into sum of irreducible subspaces
Wiy = {2eP?7e™7 1 cc. .z € c} 2R?
Eigenfunctions lie in 11y, for some p

® W' = {cos(pp)e’**} even case
Wy, = {sin(pp)e’™*}  odd case

# With weak anisotropy

u(p) ~ cos(pp) OF  u(p) =~ sin(py)
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Rotating waves

Suppose Fix(>) Is two-dimensional
Suppose Nr(X) = ¥ x SO(2)

Then generically solutions are rotating waves of a
pattern with X symmetry

Leads to rotating spirals and tunnels

Suppose Np(X) = X X Dy

Leads to pulsating solutions
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