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Outline

Model selection: alternatives to least-squares

Subset selection

Best subset
Stepwise selection (forward and backward)
Estimating error

Shrinkage methods
Ridge regression and the Lasso
Dimension reduction

Labs for each part



e
Back to the safety of linear models...




Bias vs. variance




]
Discussion

How could we

reduce the variance?




e
Subset selection

Big idea: if having too many predictors is the problem
maybe we can get rid of some

Problem: how do we choose?



Flashback: superhero example
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Image credit: Ming Malaykham



Best subset selection: try them all!




e
Finding the “best” subset

Start with the null model M, (containing no predictors)

Fork = 1,2,..,p:
Fit all (» choose k) models that contain exactly p predictors.

Keep only the one that has the smallest RSS (or equivalently
the largest R?). Call it M,.

Select a single "best” model from among M, ... M, using
cross-validated prediction error or something similar.



Discussion

Question 1: why not just use the one with the lowest RSS?

Answer: because you'll always wind up choosing the
model with the highest number of predictors (why?)




Discussion

Question 2: why not just calculate the cross-validated
prediction error on all of them?

Answer: so... many... models...




]
A sense of scale...

- We do a lot of work in groups in this class
- How many different possible groupings are there?
- Let’s break it down:
47 individual people
1,081 different groups of two
16,215 different groups of three...




e
Model overload

Number of possible models on a set of p predictors:
p

P
5 7 J-»

k=1

On 10 predictors: 1,024 models
On 20 predictors: 1,048,576 models



e
A bigger problem

Question: what happens to our estimated coefficients as
we fit more and more models?

Answer: the larger the search space, the larger the
variance. We're overfitting!




What if we could eliminate some”?
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A slightly larger example (p = 5)
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e
Best subset selection

Start with the null model M, (containing no predictors)

Fork = 1,2,...,p:
Fit all (p choose k) models that contain exactly p predictors.

Keep only the one that has the smallest RSS (or equivalently
the largest R?). Call it M,.

Select a single "best” model from among M, ... M, using
cross-validated prediction error or something similar.



]
Forward selection

Start with the null model M, (containing no predictors)

1. Fork =1,2, ..0:
~a. Fitall (p — k) models that augment M, ; with exactly 1 predictor]

B Reep only the one that has the smallest RoS (or equivaienty
the largest R?). Call it M,.

2. Select a single "best” model from among M, ... M, using
cross-validated prediction error or something similar.
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Stepwise selection: way fewer models

Number of models we have to consider:

52 )2~ S te

P
k=1 k=0

On 10 predictors: 1024 models - 51 models

On 20 predictors: over 1 million models - 211 models



Forward selection

Question: what potential problems do you see?

Answer: there’s a risk we might prune an important
predictor too early. While this method usually does well in
practice, it is not guaranteed to give the optimal solution.




]
Forward selection

Start with the null model M, (containing no predictors)

Fork = 1,2,..,p:
Fit all (p — k) models that augment M,_, with exactly 1 predictor.

Keep only the one that has the smallest RSS (or equivalently
the largest R?). Call it M,.

Select a single "best” model from among M, ... M, using
cross-validated prediction error or something similar.



e
Backward selection

Start with the full model M, (containing all predictors)\

1. Fork =p,(p—1),..,1.
a. Fit all k models that reduce M, , by exactly 1 predictor. y

B Keep only the one that has the smallest RoS (or equivaently
the largest R?). Call it M,.

-

2. Select a single "best” model from among M, ... M, using
cross-validated prediction error or something similar.



Forward selection
Question: what potential problems do you see?

Answer: if we have more predictors than we have
observations, this method won’t work (why?)




I
Choosing the optimal model

Flashback: measures of training error (RSS and R?)
aren’'t good predictors of test error (what we care about)

Two options:

We can directly estimate the test error, using either a validation
set approach or cross-validation

We can indirectly estimate test error by making an adjustment
to the training error to account for the bias




0000
Adjusted R?

Intuition: once all of the useful variables have been
included in the model, adding additional junk variables will
lead to only a small decrease in RSS

RSS
R°=1-———R,, =1

7SS

_RSS/(n—d—l)
1TSS /(n-1)

Adjusted R’ pays a penalty for unnecessary variables in
the model by dividing RSS by (n-d-1) in the numerator



e
AIC, BIC, and C,

Some other ways of penalizing RSS
Estimate of the variance

1 of the error terms

— (RSS + 2d02)

n Proportional for
1

least-squares models
-(RSS +2d57)

o’

BIC= 1 (RSS+10g(n)d62)
n

]

More severe penalty
for large models



Adjust or validate?

Question: what are the benefits and drawbacks of each?

Adjusted measures Validation

Pros Relatively inexpensive to More direct estimate (makes
compute fewer assumptions)
Makes more assumptions | More expensive: requires
Cons | about the model — more either cross validation or a
opportunities to be wrong test set
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Flashback: subset selection

Big idea: if having too many predictors is the problem
maybe we can get rid of some

Three methods:
Best subset: try all possible combinations of predictors

Forward: start with no predictors, greedily add one at a time
Backward: start with all predictors, greedily remove one at a time

Add/remove whichever predictor
improves your model right now

‘greedy” =



..
Flashback: comparing methods

Best Subset ] Backward
) Forward Selection .
Selection Selection

How many +1 +1
models get P 1+p(p ) 1+p(p )
compared? 2 2
Inexpensive;
Benefits? Provably optimal Inexpensive doesn’t ignore
interaction
Exhaustive Not guaranteed to Not guaranteed
Drawbacks? search is be optimal; to be optimal,;

expensive ignores interaction  breaks when p>n



.
Flashback: choosing the optimal model

We know measures of training error (RSS and R?) aren't
good predictors of test error (what we actually care about)

Two options:

We can indirectly estimate test error by making an adjustment to
the training error to account for the bias:

R}, C, AIC BIC

adj

Pros: inexpensive to compute
Cons: makes additional assumptions about the model

We can directly estimate the test error, using either a validation set
approach or a cross-validation approach
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Discussion: potential problems?

Only training on a subset of the data means our model is less accurate

/*- v From the kitchen of: qgrandma sps
:5:_':,,;'_:5-'._3—'_'

Recipe for: Best Subset Selection

{\If‘i?] Firet divide the data into training and test gete
Preheat the null model M, with no predictors: on the training set

oo

1. Fork=12 ..,p
a. FLtall the wmodels that contain exactly ke predictors.
b.  Keep only the model with the smallest training error. Call it M.

2. —Esttmatetheerror; and select a single “best” model from among M, ... M,
Caleulate the error rate on the test et

K'wls these da ys, wastin’
data all wLLLg—wLLLg
Like it grows ow trees!




Cross-validation: how would this work”?

/’. f:’:_}_w—— From the kitchen of: grandwma sps

‘\] Recipe for: Best Subset Selection
L
? Preheat the null wodel M, with no prediators.
1. Fork=12 ..,p
a. Fit all the models that contain exactly k predictors.
b.  Keep only the model with the smallest training ervor. call it M.

2. —Esttmeatetheerror; and select a single “best” model from among M, ... M,
Uge k-fold croge-validation to calculate the CV error

qood grief, child! N
'm never going to
make Lt to bingo!




e
Flashback: subset selection

Big idea: if having too many predictors is the problem
maybe we can get rid of some

Three methods:
Best subset: try all possible combinations of predictors
Forward: start with no predictors, greedily add one at a time
Backward: start with all predictors, greedily remove one at a time

Common theme of subset selection:
ultimately, individual predictors are either IN or OUT



e
Approach 1: ridge regression

Big idea: minimize RSS plus an additional penalty that
rewards small (sum of) coefficient values

RSS Shrinkage Revya_rds
 EE— penalty coefficients

close to zero

I—»Z: yi — Bo — Eﬁfx” +AZ_J4_I

all observations Predicted TU”'”Q Surm over
value parameter
Observed P all predictors

value

* In statistical / linear algebraic parlance, this is an {, penalty



I
Ridge regression: caveat

RSS is scale-invariant®
Question: is this true of the shrinkage penalty?

RSS Shrinkage
————— penalty
n 1 | 14 |

z Yi_ﬁO_E,Bjxij +AZ,3]'2
=1 ]:1 ]:1

Answer: no! This means having predictors at different scales
would influence our estimate... need to first standardize the
predictors by dividing by the standard deviation

* multiplying any predictor by a constant doesn’t matter



]
Discussion

- Question: why would ridge regression improve the fit
over least-squares regression?

- Answer: as usual, comes down to bias-variance tradeoff
- As )\ increases, flexibility decreases: | variance, 1 bias
- As \ decreases, flexibility increases: 1 variance, | bias

- Takeaway: ridge regression works best in situations where least
squares estimates have high variance: trades a small increase in bias
for a large reduction in variance




Comparing ridge regression and the lasso

Efficient implementations for both (in R and python!)

Both significantly reduce variance at the expense of a
small increase in bias

Question: when would one outperform the other?

Answer:

When there are relatively many equally-important predictors,
ridge regression will dominate

When there are small number of important predictors and many
others that are not useful, the lasso will win



I
Lingering concem...

- Question: how do we choose the right value of A?

- Answer: sweep and cross validate!

- Because we are only fitting a single model for each A, we can afford
to try lots of possible values to find the best (“sweeping”)

- For each A we test, we’ll want to calculate the cross-validation error
to make sure the performance is consistent




e
Recap: Ridge Regression and the Lasso

- Both are “shrinkage” methods

- Estimates for the coefficients are biased toward the origin

- Biased = “prefers some estimates to others”
- Does not yield the true value in expectation

- Question: why would we want a biased estimate?




e
Estimate for 3

When we try to estimate using OLS, we get the following:

' ®
6 | —® estimated —
=@ true

(Relatively) huge difference between
actual and estimated coefficients




e
What's going on here?
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Some dimensions are redundant
Little information in 3™ dimension not captured by the first two
In linear regression, redundancy causes noise to be amplified



