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Residual standard error

• Idea: estimate standard deviation of 𝜖 using RSS to get 
residual standard error:

𝑅𝑆𝐸 = 	 UVV
0;.

�

• Now we can finally estimate SE, which can be used to 
compute confidence intervals

• In linear regression, the 95% confidence intervals are:

𝛽*$ ± 2×𝑆𝐸 𝛽*$ and 𝛽*& ± 2×𝑆𝐸 𝛽*&
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Outline

• Model selection: alternatives to least-squares
• Subset selection
- Best subset
- Stepwise selection (forward and backward)
- Estimating error

• Shrinkage methods
- Ridge regression and the Lasso
- Dimension reduction

• Labs for each part



Back to the safety of linear models…

Y ≈ β0 +β1X1 +...+βpXp



Bias vs. variance



Discussion

How could we 
reduce the variance? 



Subset selection

• Big idea: if having too many predictors is the problem  
maybe we can get rid of some

• Problem: how do we choose?



Flashback: superhero example

Image credit: Ming Malaykham
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Best subset selection: try them all!



Finding the “best” subset

Start with the null model M0 (containing no predictors)

1. For 𝑘	 = 	1,2, … , 𝑝:
a. Fit all (p choose k) models that contain exactly p predictors.
b. Keep only the one that has the smallest RSS (or equivalently  

the largest R2). Call it Mk.

2. Select a single “best” model from among M0 … Mp using 
cross-validated prediction error or something similar.



Discussion

Question 1: why not just use the one with the lowest RSS?

Answer: because you’ll always wind up choosing the 
model with the highest number of predictors (why?)



Discussion

Question 2: why not just calculate the cross-validated 
prediction error on all of them?

Answer: so… many... models...



A sense of scale…

• We do a lot of work in groups in this class
• How many different possible groupings are there?

• Let’s break it down:
47 individual people

1,081 different groups of two
16,215 different groups of three…



Model overload

• Number of possible models on a set of p predictors:

• On 10 predictors: 1,024 models
• On 20 predictors: 1,048,576 models

p
k

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

k=1

p

∑ = 2 p



A bigger problem

Question: what happens to our estimated coefficients as 
we fit more and more models?

Answer: the larger the search space, the larger the 
variance. We’re overfitting!



What if we could eliminate some?



A slightly larger example (𝑝 = 5)

{  }

A  B  C  D  E

AB  AC  AD  AE  BC  BD  BE  CD  CE  DE

ABC  ABD  ABE  ACD  ACE  ADE  BCD  BCE  BDE  CDE

ABCD  ABCE  ABDE  ACDE  BCDE

ABCDE



Best subset selection

Start with the null model M0 (containing no predictors)

1. For 𝑘	 = 	1	, 2, … , 𝑝:
a. Fit all (𝑝	𝑐ℎ𝑜𝑜𝑠𝑒	𝑘) models that contain exactly 𝑝 predictors.
b. Keep only the one that has the smallest RSS (or equivalently  

the largest R2). Call it Mk.

2. Select a single “best” model from among M0 … Mp using 
cross-validated prediction error or something similar.



Forward selection

Start with the null model M0 (containing no predictors)

1. For 𝑘	 = 	1	, 2, … , 𝑝:
a. Fit all (𝑝 − 𝑘)	models that augment Mk-1 with exactly 1 predictor.
b. Keep only the one that has the smallest RSS (or equivalently  

the largest R2). Call it Mk.

2. Select a single “best” model from among M0 … Mp using 
cross-validated prediction error or something similar.



Stepwise selection: way fewer models

• Number of models we have to consider:

• On 10 predictors: 1024 models à 51 models
• On 20 predictors: over 1 million models à 211 models
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Forward selection

Question: what potential problems do you see?

Answer: there’s a risk we might prune an important 
predictor too early. While this method usually does well in 
practice, it is not guaranteed to give the optimal solution.



Forward selection

Start with the null model M0 (containing no predictors)

1. For 𝑘	 = 	1,2, … , 𝑝:
a. Fit all (𝑝 − 𝑘) models that augment Mk-1 with exactly 1 predictor.
b. Keep only the one that has the smallest RSS (or equivalently  

the largest R2). Call it Mk.

2. Select a single “best” model from among M0 … Mp using 
cross-validated prediction error or something similar.



Backward selection

Start with the full model Mp (containing all predictors)

1. For 𝑘	 = 	𝑝, (𝑝 − 1),… , 1:
a. Fit all k models that reduce Mk+1 by exactly 1 predictor.
b. Keep only the one that has the smallest RSS (or equivalently  

the largest R2). Call it Mk.

2. Select a single “best” model from among M0 … Mp using 
cross-validated prediction error or something similar.



Forward selection

Question: what potential problems do you see?

Answer: if we have more predictors than we have 
observations, this method won’t work (why?)



Choosing the optimal model

• Flashback: measures of training error (RSS and R2) 
aren’t good predictors of test error (what we care about)

• Two options:
1. We can directly estimate the test error, using either a validation 

set approach or cross-validation
2. We can indirectly estimate test error by making an adjustment 

to the training error to account for the bias



Adjusted R2

• Intuition: once all of the useful variables have been 
included in the model, adding additional junk variables will 
lead to only a small decrease in RSS

• Adjusted R2 pays a penalty for unnecessary variables in 
the model by dividing RSS by (n-d-1) in the numerator

R2 =1− RSS
TSS

→ RAdj
2 =1− RSS / (n− d −1)

TSS / (n−1)



Estimate of the variance
of the error terms

AIC, BIC, and Cp

• Some other ways of penalizing RSS

Cp =
1
n

RSS + 2dσ̂ 2( )

AIC = 1
nσ̂ 2 RSS + 2dσ̂ 2( )

BIC = 1
n

RSS + log(n)dσ̂ 2( )

Proportional for 
least-squares models

More severe penalty 
for large models



Adjust or validate?

Question: what are the benefits and drawbacks of each?

Adjusted measures Validation

Pros Relatively inexpensive to 
compute

More direct estimate (makes 
fewer assumptions)

Cons
Makes more assumptions 
about the model – more 
opportunities to be wrong

More expensive: requires 
either cross validation or a 
test set



Lab: subset selection

• To do today’s lab in R: leaps
• To do today’s lab in python: itertools, time

• Instructions and code:
[course website]/labs/lab8-r.html

[course website]/labs/lab8-py.html

• Full version can be found beginning on p. 244 of ISLR
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• Big idea: if having too many predictors is the problem  
maybe we can get rid of some

• Three methods:
- Best subset: try all possible combinations of predictors
- Forward: start with no predictors, greedily add one at a time
- Backward: start with all predictors, greedily remove one at a time

Flashback: subset selection

Add/remove whichever predictor 
improves your model right now“greedy” = 



Flashback: comparing methods

Best Subset 
Selection Forward Selection Backward 

Selection

How many 
models get 
compared?

Benefits?

Drawbacks?

2 p 1+
p p+1( )
2

1+
p p+1( )
2

Exhaustive 
search is 
expensive

Not guaranteed to 
be optimal; 

ignores interaction

Not guaranteed 
to be optimal; 

breaks when p>n

Provably optimal Inexpensive
Inexpensive; 

doesn’t ignore 
interaction



Flashback: choosing the optimal model

• We know measures of training error (RSS and R2) aren’t 
good predictors of test error (what we actually care about)

• Two options:
-We can indirectly estimate test error by making an adjustment to 

the training error to account for the bias:

Pros: inexpensive to compute 
Cons: makes additional assumptions about the model

-We can directly estimate the test error, using either a validation set 
approach or a cross-validation approach

BICAICCpRadj
2



From the kitchen of: Grandma SDS

Recipe for: Best Subset Selection

Preheat the null model M0 with no predictors.

1. For k = 1, 2,  … , p:
a. Fit all the models that contain exactly k predictors.
b. Keep only the model with the smallest training error. Call it Mk.

2. Estimate the error, and select a single “best” model from among M0 … Mp

First divide the data into training and test sets
* on the training set

^ Calculate the error rate on the test set

Kids these days, wastin’ 
data all willy-nilly 
like it grows on trees!

Discussion: potential problems?
Only training on a subset of the data means our model is less accurate



Cross-validation: how would this work?

From the kitchen of: Grandma SDS

Recipe for: Best Subset Selection

Preheat the null model M0 with no predictors.

1. For k = 1, 2,  … , p:
a. Fit all the models that contain exactly k predictors.
b. Keep only the model with the smallest training error. Call it Mk.

2. Estimate the error, and select a single “best” model from among M0 … Mp

^ Use k-fold cross-validation to calculate the CV error

Good grief, child! 
I’m never going to 
make it to bingo!



Lab: subset selection using validation

• To do today’s lab in R: <nothing new>

• To do today’s lab in python: <nothing new>

• Instructions and code for part 1:
http://www.science.smith.edu/~jcrouser/SDS293/labs/lab9.html

• Full version can be found beginning on p. 248 of ISLR

• For part 2: 
- Apply these techniques to a dataset of your choice
- You’re welcome (encouraged?) to work in teams!
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Outline

• Model selection: alternatives to least-squares
üSubset selection

üBest subset
üStepwise selection (forward and backward)
üEstimating error using cross-validation

• Shrinkage methods
- Ridge regression and the Lasso
- Dimension reduction

• Labs for each part



Flashback: subset selection

• Big idea: if having too many predictors is the problem  
maybe we can get rid of some

• Three methods:
- Best subset: try all possible combinations of predictors
- Forward: start with no predictors, greedily add one at a time
- Backward: start with all predictors, greedily remove one at a time

Common theme of subset selection: 
ultimately, individual predictors are either IN or OUT



Discussion

• Question: what potential problems do you see?
• Answer: we’re exploring the space of possible models as 

if there were only finitely many of them, but there are 
actually infinitely many (why?)



New approach: “regularization”

constrain 
the coefficients

Another way to phrase it:
reward models that shrink the 

coefficient estimates toward zero 
(and still perform well, of course)

subset 
selection

Y ≈ 𝛽$ + 𝛽&X& + ⋯+ 𝛽)X)



Approach 1: ridge regression

• Big idea: minimize RSS plus an additional penalty that 
rewards small (sum of) coefficient values

Predicted 
value

Sum over 
all observations

Observed 
value

RSS

Tuning
parameter

Rewards
coefficients
close to zero

Shrinkage
penalty

Sum over 
all predictors

* In statistical / linear algebraic parlance, this is an ℓ2 penalty

* 𝑦, − 𝛽$ −*𝛽.𝑥,.

)

.0&

+ 𝜆*𝛽.2
)

.0&	

4

,0&



Approach 1: ridge regression

• For each value of λ, we only have to fit one model

• Substantial computational savings over best subset!

RSS Shrinkage
penalty
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Approach 1: ridge regression

• Question: what happens when the 
tuning parameter is small?

• Answer: just minimizing RSS; simple least-squares

RSS

* 𝑦, − 𝛽$ −*𝛽.𝑥,.
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Approach 1: ridge regression

• Question: what happens when the 
tuning parameter is large?

• Answer: all coefficients go to zero; turns into null model

RSS
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Ridge regression: caveat

• RSS is scale-invariant*
• Question: is this true of the shrinkage penalty?

• Answer: no! This means having predictors at different scales 
would influence our estimate… need to first standardize the 
predictors by dividing by the standard deviation 

* multiplying any predictor by a constant doesn’t matter

RSS

* 𝑦, − 𝛽$ −*𝛽.𝑥,.
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Discussion

• Question: why would ridge regression improve the fit 
over least-squares regression?

• Answer: as usual, comes down to bias-variance tradeoff
- As λ increases, flexibility decreases: ↓ variance, ↑ bias
- As λ decreases, flexibility increases: ↑ variance, ↓ bias
- Takeaway: ridge regression works best in situations where least 

squares estimates have high variance: trades a small increase in bias 
for a large reduction in variance



So what’s the catch?

• Ridge regression doesn’t actually perform variable selection
• Final model will include all predictors
- If all we care about is prediction accuracy, this isn’t a problem
- It does, however, pose a challenge for model interpretation

• If we want a technique that actually performs variable 
selection, what needs to change?



* In statistical / linear algebraic parlance, this is an ℓ1 penalty

Approach 2: the lasso

• (same) Big idea: minimize RSS plus an additional 
penalty that rewards small (sum of) coefficient values
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Discussion

• Question: why does that enable us to get coefficients 
exactly equal to zero?



Answer: let’s reformulate a bit

• For each value of λ, there exists a value for s such that:

• Ridge regression:

• Lasso:

min
8

𝑅𝑆𝑆 	subject	to	*𝛽.2 ≤ 𝑠
)

.0&

min
8

𝑅𝑆𝑆 	subject	to	* 𝛽. ≤ 𝑠
)

.0&



Ridge regression Lasso

Comparting constraint functions



Comparting constraint functions

Ridge regression Lasso

Coefficient
estimates

Common RSS
contours



Comparing ridge regression and the lasso

• Efficient implementations for both (in R and python!)
• Both significantly reduce variance at the expense of a 

small increase in bias
• Question: when would one outperform the other?

• Answer:
-When there are relatively many equally-important predictors, 

ridge regression will dominate
-When there are small number of important predictors and many 

others that are not useful, the lasso will win



Lingering concern…

• Question: how do we choose the right value of λ? 

• Answer: sweep and cross validate!
- Because we are only fitting a single model for each λ, we can afford 

to try lots of possible values to find the best (“sweeping”)
- For each λ we test, we’ll want to calculate the cross-validation error 

to make sure the performance is consistent 



Lab: ridge regression & the lasso

• To do today’s lab in R: glmnet

• To do today’s lab in python: <nothing new>

• Instructions and code:
[course website]/labs/lab10-r.html

[course website]/labs/lab10-py.html

• Full version can be found beginning on p. 251 of ISLR
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What’s wrong with bias?

• What if your unbiased estimator gives you this?

May want to bias our estimate 
to reduce variance

i
1 2 3

i

-4,000,000,000

-2,000,000,000
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2,000,000,000

4,000,000,000



Flashback: superheroes

Image credit: Ming Malaykham
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Estimating Guardians’ Height
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Estimate for b

• When we try to estimate using OLS, we get the following:

(Relatively) huge difference between 
actual and estimated coefficients

i

i

-2

0

2

4

6 estimated
true



≈ "#$ ,

• Some dimensions are redundant
- Little information in 3rd dimension not captured by the first two
- In linear regression, redundancy causes noise to be amplified
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Dimension reduction

• Current situation: our data live in p-dimensional space, 
but not all p dimensions are equally useful

• Subset selection: throw some out
- Pro: pretty easy to do
- Con: lose some information

• Alternate approach: create new features that are 
combinations of the old ones

In other words: 
Project the data into a new feature space 

to reduce variance in the estimate



Projection



Projection



Projection



Dimension reduction via projection

• Big idea: transform the data before performing regression
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• Then instead of: 
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Linear projection

• New features are linear combinations of original data:
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• MTH211: multiplying the data matrix by a projection matrix
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What’s the deal with projection?

• Data can be rotated, scaled, and translated without 
changing the underlying relationships

• This means you’re allowed to look at the data from 
whatever angle makes your life easier…



Flashback: why did we pick this line?



Explains the most variance in the data



Imagine this line as a new dimension…



“Principal component”



Mathematically

• The 1st principal component is the normalized* linear 
combination of features:

-' = <''&' + <('&( +⋯+ <5'&5

that has the largest variance

• <'',… , <5': the loadings of the 1st principal component

* By normalized we mean: 3<
:'

(
= 1

5

:6'



Using loadings to project

Multiply by loading vector to project (“smoosh”) 
each observation onto the line:

@4' = <''A4' + <('A4( + ⋯+ <5'A45

These values are called the scores
of the 1st principal component



Additional principal components

• 2nd principal component is the normalized linear 
combination of the features

-( = <'(&' + <((&( +⋯+ <5(&5

that has maximal variance out of all linear combinations 
that are uncorrelated with Z1  (why does that matter?)

• Fun fact:



Principal components are orthogonal



Generating additional principal components

• We can think of this recursively
• To find the BCℎ principal component . . .
- Find the first (B − 1)	principal components
- Subtract the projection into that space
-Maximize the variance in the remaining complementary space



Regression in the principal components

• Original objective: solve for b in 

. = 01 +304&4 + 7

5

4

(that’s still our goal)

• Now we’re going to work in the new feature space: 

. = 81 +384-4 + 7

I

4



Regression in the principal components

• Remember: the new features are related to the old ones:

-: =3<4:&4
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• So we’re computing:
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Back to the Guardians
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Back to the Guardians

• What happens if we use 2 components instead of 3?

Using only the principal components 
significantly improves our estimate!
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Comparison with ridge regression and the lasso

• What similarities do you see?
- Reduces dimensionality of the solution space (like Lasso)
- Finds a solution in the space of all features (like RR)
- Results can be difficult to interpret (like RR)



Problems with PCR

• We selected principal components based on predictors 
(not what we’re trying to predict!)

• This could be problematic (why?)
-What if the values you’re trying to predict aren’t correlated with the 

first few components?
- You lose all predictive power!



Partial least squares (PLS)

• A supervised form of PCR
• Feature derivation algorithm is similar:
- Find the (M-1) principal most correlated components
- Subtract the projection into that space
- Maximize the variance correlation with the response in the 

remaining complementary space

• As before, we perform least squares on the new features
• We still use the formulation

-: =3<4:&4

5

46'

• But now f is computed by applying linear regression to each
predictor 



Wrapping up: PCR/PLS comparison

• Both derive a small number of orthogonal predictors for 
linear regression

• PCR is more biased
- Emphasizes stability at the expense of versatility

• PLS estimates have higher variance
-May build new features that aren’t as stable
- But high variance is better than infinite variance



Lab: PCR and PLS

• To do today’s lab in R: pls

• To do today’s lab in python: <nothing new>

• Instructions and code:
[course website]/labs/lab11-r.html

[course website]/labs/lab11-py.html

• Full version can be found beginning on p. 256 of ISLR
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