Solving homogeneous equations: $\mathrm{Ax}=0$
Putting answer in parametric vector form

Isabel K. Darcy
Mathematics Department
Applied Math and Computational Sciences
University of Iowa

Solving homogeneous equations: $\mathrm{Ax}=0$
 Putting answer in parametric vector form

or

Determining the solution set for $\mathrm{Ax}=0$

Isabel K. Darcy
Mathematics Department
Applied Math and Computational Sciences
University of Iowa

Solving homogeneous equations: $\mathrm{Ax}=0$
 Putting answer in parametric vector form

or

Determining the solution set for $A x=0$
Nullspace of $A=$ solution set for $A x=0$

Isabel K. Darcy

Mathematics Department
Applied Math and Computational Sciences
University of Iowa

Solve: $\mathbf{A} \mathbf{x}=\mathbf{0}$ where $\mathbf{A}=\left[\begin{array}{cccc}1 & -10 & -24 & -42 \\ 1 & -8 & -18 & -32 \\ -2 & 20 & 51 & 87\end{array}\right]$

Solve: $\mathbf{A} \mathbf{x}=\mathbf{0}$ where $\mathbf{A}=\left[\begin{array}{cccc}1 & -10 & -24 & -42 \\ 1 & -8 & -18 & -32 \\ -2 & 20 & 51 & 87\end{array}\right]$
Put A into echelon form and then into reduced echelon form:

$$
\left[\begin{array}{cccc}
1 & -10 & -24 & -42 \\
1 & -8 & -18 & -32 \\
-2 & 20 & 51 & 87
\end{array}\right] \xrightarrow[\substack{R_{2}-R_{1} \rightarrow R_{2} \\
R_{3}+2 R_{1} \rightarrow R_{3}}]{ }\left[\begin{array}{cccc}
1 & -10 & -24 & -42 \\
0 & 2 & 6 & 10 \\
0 & 0 & 3 & 3
\end{array}\right]
$$

$$
\left.\xrightarrow[\substack{R_{1}+8 R_{3} \rightarrow R_{1} \\
R_{1} 2 R_{3} \rightarrow R_{1}}]{R_{3} / 3 \rightarrow R_{3}} ⿺ 辶 \begin{array}{cccc}
1 & -10 & 0 & -18 \\
0 & 2 & 0 & 4 \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow[\substack{R_{1}+5 R_{2} \rightarrow R_{1} \\
R_{2} / 2 \rightarrow R_{2}}]{ }\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Solve: $A \mathbf{x}=\mathbf{0}$ where $\mathrm{A} \sim\left[\begin{array}{llll}0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1\end{array}\right]$
Put A into echelon form and then into reduced echelon form:

$$
\left[\begin{array}{cccc}
1 & -10 & -24 & -42 \\
1 & -8 & -18 & -32 \\
-2 & 20 & 51 & 87
\end{array}\right] \xrightarrow[\substack{R_{2}-R_{1} \rightarrow R_{2} \\
R_{3}+2 R_{1} \rightarrow R_{3}}]{ }\left[\begin{array}{cccc}
1 & -10 & -24 & -42 \\
0 & 2 & 6 & 10 \\
0 & 0 & 3 & 3
\end{array}\right]
$$

$$
\xrightarrow[\substack{R_{1}+8 R_{3} \rightarrow R_{1} \\
R_{1}-2 R_{3} \rightarrow R_{1} \\
R_{3} / 3 \rightarrow R_{3}}]{ }\left[\begin{array}{cccc}
1 & -10 & 0 & -18 \\
0 & 2 & 0 & 4 \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow[\substack{R_{1}+5 R_{2} \rightarrow R_{1} \\
R_{2} / 2 \rightarrow R_{2}}]{ }\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Solve: $A \mathbf{x}=\mathbf{0}$ where $\left.\mathrm{A} \sim\left[\begin{array}{llll}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1\end{array}\right] \right\rvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}$

$$
\begin{aligned}
& \text { Solve: Ax = } \mathbf{0} \text { where } \mathrm{A} \text { ~ }
\end{aligned}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{4} \\
-2 x_{4} \\
-x_{4} \\
x_{4}
\end{array}\right]
$$

Solve: $\mathbf{A} \boldsymbol{x}=\mathbf{0}$ where $\left.\mathbf{A} \sim \underset{\sim}{\sim}\left[\begin{array}{lll|l}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 1\end{array}\right] \right\rvert\, \begin{gathered}0 \\ x_{1}\end{gathered} x_{2}$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{4} \\
-2 x_{4} \\
-x_{4} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-2 \\
-1 \\
1
\end{array}\right] x_{4}
$$

Solve: $B \mathbf{x}=\mathbf{0}$ where $\mathbf{B} \sim\left[\begin{array}{ccccc}0 & 1 & 0 & 8 & 0 \\ 0 & 0 & 1 & -6 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$

$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
\\
x_{4}
\end{array}\right]
$$

Solve: $B \mathbf{x}=\mathbf{0}$ where $\mathbf{B} \sim\left[\left.\begin{array}{ccc|c|c}{\left[\begin{array}{lllll}0 & 1 & 0 & 8 & 0 \\ 0 & 0 & 1 & -6 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 1 \\ x_{1} & x_{2} & x_{3} & x_{4} & x_{5}\end{array}\right]}\end{array} \right\rvert\, \begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right.$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
-8 x_{4} \\
-6 x_{4} \\
x_{4} \\
0
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
0 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
-8 x_{4} \\
-6 x_{4} \\
x_{4} \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] x_{1}+\left[\begin{array}{c}
0 \\
-8 \\
-6 \\
1 \\
0
\end{array}\right] x_{4}
$$

Solve: $\mathbf{C} \mathbf{x}=\mathbf{0}$ where $\mathbf{C} \sim\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=[]
$$

Solve: $C \boldsymbol{x}=\mathbf{0}$ where $\left.\mathbf{C} \sim\left[\begin{array}{ccccc} & (1) & 0 & 0 & -3 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & -1 \\ x_{1} & x_{2} & x_{3} & x_{4} & x_{5}\end{array}\right] \right\rvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0\end{aligned}$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-5 x_{5} \\
3 x_{5} \\
0 \\
x_{5} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-5 \\
3 \\
0 \\
1 \\
1
\end{array}\right] x_{5}
$$

Solve: $D \mathbf{x}=\mathbf{0}$ where $\mathbf{D} \sim\left[\begin{array}{cccccc}1 & 0 & 0 & -7 & 2 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 5 & -4 & 0\end{array}\right]$

Solve: $\mathrm{Dx}=\mathbf{0}$ where D ~
 $$
\underset{x_{1}}{ }
$$

Solve: $\mathrm{Dx}=\mathbf{0}$ where D ~
 $$
\underset{x_{1}}{ }
$$

Solve: $D \mathbf{x}=\mathbf{0}$ where D ~

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
7 x_{4}-2 x_{5} \\
-x_{4} \\
-5 x_{4}+4 x_{5} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
7 \\
-1 \\
-5 \\
1 \\
0 \\
0
\end{array}\right] x_{4}+\left[\begin{array}{l}
-2 \\
0 \\
4 \\
0 \\
1 \\
0
\end{array}\right] x_{5}+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] x_{6}
$$

Solve: $\mathbf{E x}=\mathbf{0}$ where $\mathbf{E} \sim\left[\begin{array}{ccccccc}0 & 1 & 0 & -5 & 0 & 0 & 5 \\ 0 & 0 & 1 & 7 & 0 & 0 & -3\end{array}\right]$

Solve: $\mathbf{E} \mathbf{x}=\mathbf{0}$ where $\mathbf{E} \sim\left[\begin{array}{ccc|ccc|c}0 & 1 & 0 & -5 & 0 & 0 & 5 \\ 0 & 0 & 1 & 7 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ x_{1} & x_{x_{2}} & x_{3} & x_{x_{4}} & x_{x_{5}} & x_{x_{6}} & x_{x_{7}}\end{array}\right]$

Solve: $\mathbf{E x}=\mathbf{0}$ where $\mathbf{E} \sim\left[\begin{array}{ccccccc|c}0 & 1 & 0 \\ 0 & 1 & 0 & -5 & 0 & 0 & 5 \\ 0 & 0 & 1 & 7 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{x_{1}}{} & 0 & x_{2} & x_{3} & x_{x_{4}} & x_{5} & x_{6} & x_{x_{7}} \\ \hline\end{array}\right.$

Solve: $\mathrm{Ex}=\mathbf{0}$ where $\mathrm{E} \sim$

