Thm: Suppose λ_i , i = 1, ..., n are DISTINCT eigenvalues of a matrix A. If \mathcal{B}_i is a basis for the eigenspace corresponding to λ_i , then

 $\mathcal{B} = \mathcal{B}_1 \cup ... \cup \mathcal{B}_n$ is linearly independent.

Defn: Suppose the characteristic polynomial of A is

 $(\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} \dots (\lambda - \lambda_n)^{k_n}$

where the λ_i , i = 1, ..., n are DISTINCT. Then the algebraic multiplicity of λ_i is k_i .

That is the algebraic multiplicity of λ_i is the number of times that $(\lambda - \lambda_i)$ appears as a factor of the characteristic polynomial of A.

Defn: The **geometric multiplicity of** $\lambda_i = \text{dimension}$ of the eigenspace corresponding to λ_i .

Thm (Geometric and Algebraic Multiplicity):

- a.) The geometric multiplicity is less than or equal to the algebraic multiplicity [That is, Nullity of $(\lambda_i I A) \leq k_i$].
- b.) A is diagonalizable if and only if the geometric multiplicity is equal to the algebraic multiplicity for every eigenvalue.

Inner Product Example: Dot product on \mathbb{R}^n .

Defn:
$$\sum_{k=1}^{m} a_k = a_1 + a_2 + \dots + a_m$$

Defn:

The **dot product** of
$$\mathbf{u} = (u_1, ..., u_m) \& \mathbf{v} = (v_1, ..., v_m)$$
 is $\mathbf{u} \cdot \mathbf{v} = \sum_{k=1}^m u_k v_k$.

In words, $\mathbf{u} \cdot \mathbf{v}$ is the sum of the products of the corresponding components of \mathbf{u} and \mathbf{v} .

Note that $\mathbf{u} \cdot \mathbf{v}$ is a real number (not a vector).

Examples:

$$(1,2,3)\cdot(4,5,6) = 4 + 10 + 18 = 32$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 1 \end{bmatrix} = -2 + 2 = 0$$

Defn: Let \mathbf{v} be a vector in an inner product space \mathbf{V} . The length or norm of $\mathbf{v} = ||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$. $\sqrt{|\mathbf{v} \cdot \mathbf{v}|}$

$$||(3,4)|| = \sqrt{3^2 + 4^2} = \sqrt{5^2} = 5$$

Defn: The vector \mathbf{u} is a <u>unit vector</u> if $||\mathbf{u}|| = 1$.

_

6.1: Inner Products.

Defn: Let V be a vector space over the real numbers. An inner product for V is a function that associates a real number $\mathbf{u} \cdot \mathbf{v}$ to every pair of vectors, \mathbf{u} and \mathbf{v} in V such that the following properties are satisfied for all \mathbf{u} , \mathbf{v} , \mathbf{w} in V and scalars c:

a.)
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

b.)
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

$$c.$$
) $(c\mathbf{u})\cdot v = c(\mathbf{u}\cdot \mathbf{v}) = \mathbf{u}\cdot (c\mathbf{v})$

d.)
$$\mathbf{u} \cdot \mathbf{u} \ge 0$$
 and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = 0$

A vector space V together with an inner product is called an inner product space.

Thm 6.1.1': Let V be an inner product space. Then for all vectors $\mathbf{u_1}, \mathbf{u_2}, \mathbf{v}$ in V and scalars c_1, c_2 :

(a.)
$$(c_1\mathbf{u_1} + c_2\mathbf{u_2})\cdot\mathbf{v} = \mathbf{v}\cdot(c_1\mathbf{u_1} + c_2\mathbf{u_2})$$

= $c_1(\mathbf{u_1}\cdot\mathbf{v}) + c_2(\mathbf{u_2}\cdot\mathbf{v})$

b.)
$$\mathbf{0} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{0} = 0$$

Note that $\frac{\mathbf{v}}{||\mathbf{v}||}$ is a unit vector.

Vector in the direction of the vector (3, 4):

$$11(3,4)11=5$$
 $(\frac{3}{5})\frac{y}{5}$

Create a unit vector in the direction of the vector (1, 2):

$$||(1,2)|| = \sqrt{1^2 + 2^2} = \sqrt{5}$$

$$|(\sqrt{5})|^{\frac{1}{5}} = \sqrt{5}$$

Create a unit vector in the direction of the vector (-2, 1):

$$11(-2,1)11 = \sqrt{4+1} = \sqrt{5}$$

Defn: u and v are orthogonal (or perpendicular) if

$$\mathbf{u} \cdot \mathbf{v} = 0.$$

Example:
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 1 \end{bmatrix} = 1(-2) + 2(1) = 0$$

Thus $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -2\\1 \end{bmatrix} \right\}$ is a set of orthogonal unit vectors.

$$\begin{bmatrix} \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{-2}{\sqrt{5}} \end{bmatrix}$$

Example:
$$\begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix} \cdot \begin{bmatrix} \frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix} = \bigcirc$$

Observation:

$$\begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$$

Suppose $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$ is a pair of orthogonal unit vectors. Then

$$\begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix} \begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \end{bmatrix} = \begin{bmatrix} \mathbf{u} \cdot \mathbf{u} & \mathbf{u} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{u} & \mathbf{v} \cdot \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbf{u} \cdot \mathbf{u} & \mathbf{v} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{u} & \mathbf{v} \cdot \mathbf{v} \end{bmatrix}$$