1. (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms/ur_la_23_1.pg
Write the matrix of the quadratic form
$Q(x)=-9 x_{1}^{2}+2 x_{2}^{2}-1 x_{3}^{2}-1 x_{1} x_{2}+3 x_{1} x_{3}-9 x_{2} x_{3}$.
$A=\left[\begin{array}{lll}- & - & - \\ - & - & - \\ - & - & -\end{array}\right]^{-}$.
2. (1 pt$)$ Library/Rochester/setLinearAlgebra23QuadraticForms-/ur-la_23_2.pg
Find the eigenvalues of the matrix
$M=\left[\begin{array}{cc}-55 & 5 \\ 5 & -55\end{array}\right]$.
Enter the two eigenvalues, separated by a comma:

Classify the quadratic form $Q(x)=x^{T} A x$:

- A. $Q(x)$ is indefinite
- B. $Q(x)$ is negative definite
- C. $Q(x)$ is positive definite
- D. $Q(x)$ is positive semidefinite
- E. $Q(x)$ is negative semidefinite

3. (1 pt$)$ Library/Rochester/setLinearAlgebra23QuadraticForms/ur_la_23_3.pg
The matrix
$A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 4\end{array}\right]$
has three distinct eigenvalues, $\lambda_{1}<\lambda_{2}<\lambda_{3}$,
$\lambda_{1}=\longrightarrow$,
$\lambda_{2}=—$,
$\lambda_{3}=$ \qquad
Classify the quadratic form $Q(x)=x^{T} A x$:

- A. $Q(x)$ is positive definite
- B. $Q(x)$ is positive semidefinite
- C. $Q(x)$ is indefinite
- D. $Q(x)$ is negative definite
- E. $Q(x)$ is negative semidefinite

4. (1 pt$)$ Library/Rochester/setLinearAlgebra23QuadraticForms/ur_la_23_4.pg
If $A=\left[\begin{array}{ll}2 & 8 \\ 8 & 3\end{array}\right]$ and $Q(x)=x \cdot A x$,
Then $Q\left(e_{1}\right)=_$and $Q\left(e_{2}\right)=$
5. (1 pt$)$ Library/Rochester/setLinearAlgebra23QuadraticForms/ur_la_23_5.pg
If $A=\left[\begin{array}{ccc}2 & -6 & 9 \\ -6 & 6 & -5 \\ 9 & -5 & -7\end{array}\right]$ and $Q(x)=x \cdot A x$,
Then $Q\left(x_{1}, x_{2}, x_{3}\right)=_x_{1}^{2}+_x_{2}^{2}+_x_{3}^{2}+\ldots x_{1} x_{2}+\ldots$
$x_{1} x_{3}+\ldots x_{2} x_{3}$.
