1. (1 pt) local/Library/UI/LinearSystems/mformsHint.pg

Determine the following equivalent representations of the following system of equations:

$$
\begin{gathered}
3 x+8 y=-7 \\
-8 x+7 y=-38
\end{gathered}
$$

a. Find the augmented matrix of the system.

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & -
\end{array}\right]
$$

b. Find the matrix form of the system.

$$
\left[\begin{array}{ll}
- & - \\
- & -
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
- \\
-
\end{array}\right]
$$

c. Find matrices that satisfy the following matrix equation.
$x\left[\begin{array}{l}- \\ -\end{array}\right]+y\left[\begin{array}{l}- \\ -\end{array}\right]$
d. The graph below shows the lines determined by the two equations in our system:

Find the coordinates of
$P=($ \qquad
Find the coordinates of y-intercept of the red line.
$A=(0, —)$
Find the coordinates of x-intercept of the green line.
$B=(\ldots, 0)$
Hint: (Instructor hint preview: show the student hint after 1 attempts. The current number of attempts is 0 .)
For part d, note that you are given the equations of the red and green lines. If a point lies on a line, it must satisfy the equation for that line.

Correct Answers:

$$
\left[\begin{array}{ccc}
3 & 8 & -7 \\
-8 & 7 & -38
\end{array}\right]
$$

-

$$
\left[\begin{array}{cc}
3 & 8 \\
-8 & 7
\end{array}\right]
$$

-

$$
\left[\begin{array}{c}
-7 \\
-38
\end{array}\right]
$$

-

$$
\left[\begin{array}{c}
3 \\
-8
\end{array}\right]
$$

-

$$
\left[\begin{array}{l}
8 \\
7
\end{array}\right]
$$

\bullet

$$
\left[\begin{array}{c}
-7 \\
-38
\end{array}\right]
$$

- 3
- -2
- -0.875
- 4.75

2. ($1 \quad$ pt) Library/Rochester/setLinearAlgebra9Dependence/ur_la_9_10.pg
Express the vector $v=\left[\begin{array}{l}26 \\ 13\end{array}\right]$ as a linear combination of $x=\left[\begin{array}{l}6 \\ 5\end{array}\right]$ and $y=\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
$v=\underline{x+y .}$.

Correct Answers:

- 5
- -4

3. (1 pt) local/Library/UI/LinearSystems/linearCombHW4.pg

Let $A=\left[\begin{array}{rrr}1 & -1 & -3 \\ 4 & -2 & -10 \\ -2 & 1 & 5\end{array}\right]$ and $b=\left[\begin{array}{r}-1 \\ -11 \\ 5\end{array}\right]$
? 1. Determine if b is a linear combination of a_{1}, a_{2} and a_{3}, the columns of the matrix A.

If it is a linear combination, determine a non-trivial linear relation - (a non-trivial relation is three numbers which are not all three zero.) Otherwise, enter 0's for the coefficients.
$\ldots \quad a_{1}+\ldots a_{2}+\ldots a_{3}=b$.
Correct Answers:

- No
- 0
- 0
- 0

4. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.2.8.pg

Let $\mathbf{a}_{1}=\left[\begin{array}{l}-6 \\ -1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}-24 \\ -4\end{array}\right]$.
Is \mathbf{b} in the span of of \mathbf{a}_{1} ?

- A. No, \mathbf{b} is not in the span.
- B. Yes, \mathbf{b} is in the span.
- C. We cannot tell if \mathbf{b} is in the span.

Either fill in the coefficients of the vector equation, or enter "NONE" if no solution is possible.
b $=$ \qquad \mathbf{a}_{1}
Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

From the first component we see $-24=4 *-6$.
From the second component we see $-4=4 *-1$.

Thus $\mathbf{b}=4 \mathbf{a}_{1}$ is in the span of \mathbf{a}_{1}.
Correct Answers:

- B
- 4

5. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.2.10.pg

Let $\mathbf{a}_{1}=\left[\begin{array}{c}-6 \\ 4 \\ 7\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{c}-7 \\ 2 \\ 9\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}-31 \\ 18 \\ 37\end{array}\right]$.
Is \mathbf{b} in the span of of \mathbf{a}_{1} and \mathbf{a}_{2} ?

- A. Yes, \mathbf{b} is in the span.
- B. No, \mathbf{b} is not in the span.
- C. We cannot tell if \mathbf{b} is in the span.

Either fill in the coefficients of the vector equation, or enter "NONE" if no solution is possible.
$\mathbf{b}=\underline{\mathbf{a}_{1}}+\ldots \mathbf{a}_{2}$
Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

Using row reduction, we see

$$
\left[\begin{array}{ccc}
-6 & -7 & -31 \\
4 & 2 & 18 \\
7 & 9 & 37
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 4 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Thus $\mathbf{b}=4 \mathbf{a}_{1}+1 \mathbf{a}_{2}$.
Correct Answers:

- A
- 4
- 1

6. (1 pt) local/Library/UI/LinearSystems/spanHW4.pg

Let $A=\left[\begin{array}{rrr}1 & -2 & 5 \\ 5 & -11 & 27 \\ 1 & -5 & 12\end{array}\right]$, and $b=\left[\begin{array}{r}-4 \\ 2 \\ -4\end{array}\right]$.
Denote the columns of A by a_{1}, a_{2}, a_{3}, and let $W=$ $\operatorname{span}\left\{a_{1}, a_{2}, a_{3}\right\}$.

$?$? 1. Determine if b is in $\left\{a_{1}, a_{2}, a_{3}\right\}$
$?$ 2. Determine if b is in W

How many vectors are in $\left\{a_{1}, a_{2}, a_{3}\right\}$? (For infinitely many, enter -1) \qquad
How many vectors are in W ? (For infinitely many, enter -1)

Correct Answers:

- No
- Yes
- 3
- -1

7. (1 pt) Library/TCNJ/TCNJ_VectorEquations/problem4.pg

Let $u=\left[\begin{array}{c}-1 \\ 5 \\ -3\end{array}\right]$ and $v=\left[\begin{array}{c}1 \\ -7 \\ 4\end{array}\right]$
Find two vectors in $\operatorname{span}\{u, v\}$ that are not multiples of u or v and show the weights on u and v used to generate them.
$_u+_v=$
$_u+_v=$
Correct Answers:
-
-
\bullet
-
\bullet
8. (1 pt) Library/TCNJ/TCNJ_VectorEquations/problem6.pg Let $\vec{u}=\left[\begin{array}{c}5 \\ -1 \\ 1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{c}-10 \\ 1 \\ 0\end{array}\right]$. Find a vector \vec{w} not in $\operatorname{span}\{\vec{u}, \vec{v}\}$.

$$
\vec{w}=\left[\begin{array}{l}
- \\
-
\end{array}\right]
$$

-

$$
\left[\begin{array}{c}
-1 \\
-10 \\
-5
\end{array}\right]
$$

9. (1 pt) Library/TCNJ/TCNJ_MatrixEquations/problem4.pg

Let $A=\left[\begin{array}{ccc}-1 & 1 & 5 \\ -2 & 3 & 3 \\ -2 & -3 & 1\end{array}\right]$ and $x=\left[\begin{array}{c}2 \\ -2 \\ 4\end{array}\right]$.
? 1. What does $A x$ mean?
Correct Answers:

- Linear combination of the columns of A

10. (1 pt) Library/Rochester/setLinearAlgebra9Dependence-/ur-la_9.8.pg
Let $v_{1}=\left[\begin{array}{c}2 \\ 4 \\ -1\end{array}\right], v_{2}=\left[\begin{array}{c}-2 \\ -6 \\ -1\end{array}\right]$, and $y=\left[\begin{array}{c}2 \\ 10 \\ h\end{array}\right]$.
For what value of h is y in the plane spanned by v_{1} and v_{2} ? $h=$

Correct Answers:

- 5

11. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.2.31.pg

$$
\text { Let } A=\left[\begin{array}{cc}
3 & 3 \\
5 & 4 \\
-3 & 8
\end{array}\right]
$$

We want to determine if the system $A \mathbf{x}=\mathbf{b}$ has a solution for every $\mathbf{b} \in \mathbb{R}^{3}$.

Select the best answer.

- A. There is a solution for every $\mathbf{b} \in \mathbb{R}^{3}$ but we need to row reduce A to show this.
- B. There is a solution for every $\mathbf{b} \in \mathbb{R}^{3}$ since $2<3$
- C. There is a not solution for every $\mathbf{b} \in \mathbb{R}^{3}$ but we need to row reduce A to show this.
- D. There is not a solution for every $\mathbf{b} \in \mathbb{R}^{3}$ since $2<3$.
- E. We cannot tell if there is a solution for every $\mathbf{b} \in \mathbb{R}^{3}$.

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

There is not a solution for every $\mathbf{b} \in \mathbb{R}^{3}$ since $2<3$.
Correct Answers:

- D

12. (1 pt) Library/TCNJ/TCNJ_VectorEquations/problem5.pg

 Let $H=\operatorname{span}\{u, v\}$. For each of the following sets of vectors determine whether H is a line or a plane.$$
\begin{aligned}
& \text { ? 1. } u=\left[\begin{array}{l}
-8 \\
-3 \\
-1
\end{array}\right], v=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \text { ? 2. } u=\left[\begin{array}{l}
4 \\
4 \\
4
\end{array}\right], v=\left[\begin{array}{l}
-16 \\
-15 \\
-13
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { ? 3. } u=\left[\begin{array}{c}
2 \\
-1 \\
-3
\end{array}\right], v=\left[\begin{array}{c}
-8 \\
4 \\
12
\end{array}\right], \\
& \text { ? 4. } u=\left[\begin{array}{c}
5 \\
1 \\
-2
\end{array}\right], v=\left[\begin{array}{c}
13 \\
2 \\
-2
\end{array}\right]
\end{aligned}
$$

Correct Answers:

- Line
- Plane
- Line
- Plane

13. (1 pt) Library/TCNJ/TCNJ_MatrixEquations/problem13.pg Do the following sets of vectors span \mathbb{R}^{3} ?

Correct Answers:

- No
- No
- No
- Yes

14. (1 pt) Library/TCNJ/TCNJ_MatrixEquations/problem1.pg Show that the vectors

$$
\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]
$$

do not span \mathbb{R}^{3} by giving a vector not in their span.
$\left[\begin{array}{l}- \\ - \\ \text { Correct Answers: }\end{array}{ }_{l}\right.$
-
$\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$

If a linear system has four equations and seven variables, then it must have infinitely many solutions.

- A. True
- B. False

Every linear system with free variables has infinitely many solutions.

- A. True
- B. False

Any linear system with more variables than equations cannot have a unique solution.

- A. True
- B. False

If a linear system has the same number of equations and variables, then it must have a unique solution.

- A. True
- B. False

A vector b is a linear combination of the columns of a ma$\operatorname{trix} A$ if and only if the equation $A x=b$ has at least one solution.

- A. True
- B. False

If the columns of an $m \times n$ matrix, A span \mathbb{R}^{m}, then the equation, $A x=b$ is consistent for each b in \mathbb{R}^{m}.

- A. True
- B. False

If A is an $m \times n$ matrix and if the equation $A x=b$ is inconsistent for some b in \mathbb{R}^{m}, then A cannot have a pivot position in every row.

- A. True
- B. False

Any linear combination of vectors can always be written in the form $A x$ for a suitable matrix A and vector x.

- A. True
- B. False

If the equation $A x=b$ is inconsistent, then b is not in the set spanned by the columns of A.

- A. True
- B. False

If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^{m}, then the equation $A x=b$ is inconsistent for some b in \mathbb{R}^{m}.

- A. True
- B. False

The equation $A x=b$ is consistent if the augmented matrix [$A b]$ has a pivot position in every row.

- A. True
- B. False

If the augmented matrix $[A b]$ has a pivot position in every row, then the equation $A x=b$ is inconsistent.

- A. True
- B. False

Correct Answers:

- B
- B
- A
- B
- A
- A
- A
- A
- A
- A
- B
- B

16. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.2.56.pg

What conditions on a matrix A insures that $A \mathbf{x}=\mathbf{b}$ has a solution for all \mathbf{b} in \mathbb{R}^{n} ?

Select the best statement. (The best condition should work with any positive integer n.)

- A. The equation will have a solution for all \mathbf{b} in \mathbb{R}^{n} as long as the columns of A do not include the zero column.
- B. The equation will have a solution for all \mathbf{b} in \mathbb{R}^{n} as long as the columns of A span \mathbb{R}^{n}.
- C. There is no easy test to determine if the equation will have a solution for all \mathbf{b} in \mathbb{R}^{n}.
- D. The equation will have a solution for all \mathbf{b} in \mathbb{R}^{n} as long as no column of A is a scalar multiple of another column.
- E. none of the above

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

The equation will have a solution for all \mathbf{b} in \mathbb{R}^{n} as long as the columns of A span \mathbb{R}^{n}.

Correct Answers:

- B

17. ($\mathbf{1} \mathrm{pt})$ Library/WHFreeman/Holt_linear_algebra/Chaps_1-412.2.57.pg

Assume $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ spans \mathbb{R}^{3}.
Select the best statement.

- A. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ spans \mathbb{R}^{3} unless \mathbf{u}_{4} is the zero vector.
- B. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ always spans \mathbb{R}^{3}.
- C. There is no easy way to determine if $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ spans \mathbb{R}^{3}.
- D. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ never spans \mathbb{R}^{3}.
- E. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ spans \mathbb{R}^{3} unless \mathbf{u}_{4} is a scalar multiple of another vector in the set.
- F. none of the above

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

The span of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a subset of the span of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$, so $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ always spans \mathbb{R}^{3}.

Correct Answers:

- B

18. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.2.58.pg

Assume $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ does not span \mathbb{R}^{3}.
Select the best statement.

- A. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ may, but does not have to, span \mathbb{R}^{3}.
- B. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ never spans \mathbb{R}^{3}.
- C. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ spans \mathbb{R}^{3} unless \mathbf{u}_{4} is a scalar multiple of another vector in the set.
- D. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ spans \mathbb{R}^{3} unless \mathbf{u}_{4} is the zero vector.
- E. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ always spans \mathbb{R}^{3}.
- F. none of the above

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

$\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ may, but does not have to, span \mathbb{R}^{3}.
Correct Answers:

- A

19. ($1 \quad$ pt $)$ Library/TCNJ/TCNJ_SolutionSetsLinearSystems/problem8.pg
Suppose the solution set of a certain system of equations can be described as $x_{1}=4-6 t, x_{2}=4+6 t, x_{3}=4 t-3, x_{4}=-6-4 t$, where t is a free variable. Use vectors to describe this solution set as a line in \mathbb{R}^{4}.
$L(t)=\left[\begin{array}{l}- \\ - \\ -\end{array}\right]+t\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$.

-

$\left[\begin{array}{c}4 \\ 4 \\ -3 \\ -6\end{array}\right]$
$\left[\begin{array}{c}-6 \\ 6 \\ 4 \\ -4\end{array}\right]$
20. (1 pt) Library/NAU/setLinearAlgebra/HomLinEq.pg Solve the equation

$$
-6 x-2 y+9 z=0
$$

$\underset{\text { Correct Answers: }}{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]}=s\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$

-
(\displaystyle\left. \begin\{array\}\{c\} } \backslash mbox $\{-2\}$ \cr $\backslash m b o x\{6\} \backslash \mathrm{cr}$
$\backslash m b o x\{0\} \backslash c r$
\end\{array\} \right. \) , $\displaystyle\left. \begin\{array\} \{c }
\(\backslash m b o x\{9\} \backslash c r$
$\backslash m b o x\{0\} \backslash c r$
$\backslash m b o x\{6\} \backslash c r$
\end\{array\}\right. \) }

21. (1 pt) local/Library/UI/LinearSystems/ur_la_1_19AxB.pg

Solve the system

$$
\begin{gathered}
\left\{\begin{array}{r}
4 x_{1}-3 x_{2}+4 x_{3}+4 x_{4}=0 \\
-x_{1}+x_{2}+3 x_{3}+3 x_{4}=0 \\
3 x_{1}-2 x_{2}+7 x_{3}+7 x_{4}=0 \\
3 x_{1}-3 x_{2}-9 x_{3}-9 x_{4}=0
\end{array}\right. \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=+\left[\begin{array}{l}
- \\
-
\end{array}\right] s+\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right] t}
\end{gathered}
$$

```
\mbox{-13} \cr
\mbox{-16} \cr
\mbox{1} \cr
\mbox{0} \cr
\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c
\mbox{-13} \cr
\mbox{-16} \cr
\mbox{0} \cr
\mbox{1} \cr
\end{array}\right.\)
- B
```

22. (1 pt) local/Library/UI/LinearSystems/ur_la_1_20vv3.pg Solve the system

$$
\left\{\begin{array}{rl}
x_{1}+4 x_{2}+2 x_{3}+2 x_{5}-2 x_{6} & =0 \\
-x_{4}+4 x_{5}-4 x_{6} & =0 \\
x_{1}+4 x_{2} & +6 x_{5}-4 x_{6}
\end{array}=0\right.
$$

Solve the system

$$
\begin{gathered}
\left\{\begin{array}{rr}
4 x_{1}-3 x_{2}+4 x_{3}+4 x_{4}= & 3 \\
-x_{1}+x_{2}+3 x_{3}+3 x_{4}= & 4 \\
3 x_{1}-2 x_{2}+7 x_{3}+7 x_{4}= & 7 \\
3 x_{1}-3 x_{2}-9 x_{3}-9 x_{4}=-12
\end{array}\right. \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
- \\
- \\
- \\
- \\
-
\end{array}\right] s+\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right] t}
\end{gathered}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{l}
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
-
\end{array}\right] t+\left[\begin{array}{l}
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
-
\end{array}\right]
$$

Solve the system

$$
\left\{\begin{array}{r}
x_{1}+4 x_{2}+2 x_{3}+2 x_{5}-2 x_{6}=1 \\
-x_{4}+4 x_{5}-4 x_{6}=7 \\
x_{1}+4 x_{2}+6 x_{5}-4 x_{6}=5
\end{array}\right.
$$

If the matrix A corresponds to the coefficient matrix for the above system of equations, then given any vector \vec{b}, the matrix equation $A \vec{x}=\vec{b}$ will always has an infinite number of solutions.

- A. True
- B. False

Correct Answers:

-
(\displaystyle\left. \begin\{array\}\{c\} }
\backslash mbox $\{-13\} \backslash \mathrm{cr}$
$\backslash m b o x\{-16\} \backslash c r$
$\backslash \operatorname{mbox}\{1\} \backslash \mathrm{cr}$
\backslash mbox $\{0\}$ \cr
\end\{array\} \right. } \backslash) , \(\displaystyle\left. \begin\{array\} \{c\}
\backslash mbox $\{-13\} \backslash \mathrm{cr}$
$\backslash \operatorname{mbox}\{-16\} \backslash \mathrm{cr}$
$\backslash m b o x\{0\} \backslash \mathrm{cr}$
$\backslash m b o x\{1\} \backslash c r$
\end\{array\} \right. \) }
-
(\displaystyle\left. \begin\{array\}\{c\} }
$\backslash m b o x\{15\} \backslash c r$
$\backslash m b o x\{19\} \backslash c r$
$\backslash \operatorname{mbox}\{0\} \backslash \mathrm{cr}$
$\backslash \operatorname{mbox}\{0\} \backslash \mathrm{cr}$
- A. True
\end\{array\}\right. \) , $\displaystyle\left. \begin\{array\}\{ }
\{ \(\}$ B. False
above system of equations, then given any vector \vec{b}, the matrix equation $A \vec{x}=\vec{b}$ will always has an infinite number of solutions.

Correct Answers:

-
(\displaystyle\left. \begin\{array\}\{c\} }
$$
\backslash \operatorname{mbox}\{-4\} \backslash \mathrm{cr}
$$
$\backslash m b o x\{1\} \backslash \mathrm{cr}$
$\backslash m b o x\{0\} \backslash c r$
$\backslash \operatorname{mbox}\{0\} \backslash c r$
$\backslash \operatorname{mbox}\{0\} \backslash \mathrm{cr}$
$\backslash m b o x\{0\} \backslash$ cr
\end\{array\} \right. \) , $\displaystyle\left. \begin\{array\}\{c } \(\backslash m b o x\{-6\} \backslash c r$
$\backslash \operatorname{mbox}\{0\} \backslash \mathrm{cr}$
$\backslash \operatorname{mbox}\{2\} \backslash \mathrm{cr}$
$\backslash \operatorname{mbox}\{4\} \backslash \mathrm{cr}$
$\backslash \operatorname{mbox}\{1\} \backslash \mathrm{cr}$
$\backslash m b o x\{0\} \backslash c r$
$\backslash m b o x\{-2\} \backslash \mathrm{cr}$
$\backslash \operatorname{mbox}\{-7\} \backslash \mathrm{cr}$
$\backslash m b o x\{0\} \backslash c r$
$\backslash m b o x\{0\} \backslash c r$
\end\{array\} \right. \) , $\displaystyle\left. \begin\{array\} \{c }
\(\backslash m b o x\{-4\} \backslash \mathrm{cr}$
\backslash mbox\{1\} \cr
\backslash mbox $\{0\}$ \cr
$\backslash m b o x\{0\} \backslash c r$
) $\backslash \operatorname{mbox}\{0\} \backslash \mathrm{cr}$
$\backslash m b o x\{0\} \backslash c r$
\end\{array\}\right. \) , $\displaystyle\left.\begin\{array\}\{c }
\(\backslash m b o x\{-6\}$ \cr
$\backslash m b o x\{0\} \backslash c r$
\end\{array\} \right. \) , $\displaystyle\left. \begin\{array\}\{c }
\(\backslash m b o x\{4\} \backslash c r$
$\backslash \operatorname{mbox}\{0\} \backslash \mathrm{cr}$
$\backslash m b o x\{-1\} \backslash c r$
\backslash mbox $\{-4\}$ \cr
$\backslash \operatorname{mbox}\{0\} \backslash \mathrm{cr}$
$\backslash \operatorname{mbox}\{1\} \backslash \mathrm{cr}$
\end\{array\} \right. \) }
-
(\displaystyle\left. \begin\{array\}\{c\} }
$\backslash m b o x\{5\} \backslash c r$
$\backslash \operatorname{mbox}\{0\} \backslash \mathrm{cr}$
$\backslash m b o x\{2\} \backslash \mathrm{cr}$
$\backslash \operatorname{mbox}\{4\} \backslash \mathrm{cr}$
\backslash mbox $\{1\}$ Ccr
\end\{array\} \right. \) , $\displaystyle\left. \begin\{array\}\{c }
\(\backslash m b o x\{4\} \backslash c r$
$\backslash m b o x\{0\} \backslash c r$
$\backslash m b o x\{-1\} \backslash c r$
$\backslash \operatorname{mbox}\{-4\} \backslash \mathrm{cr}$
$\backslash m b o x\{0\} \backslash c r$
$\backslash m b o x\{1\} \backslash c r$
\end\{array\}\right. \) }
- A

