ft-uiowa-math2550

me me Assignment Hw4fall14 due 09/18/2014 at 11:59pm CDT

1. (1 pt) local/Library/UI/LinearSystems/mformsHint.pg Determine the following equivalent representations of the following system of equations:

$$3x + 8y = -7$$

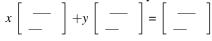
$$-8x + 7y = -38$$

a. Find the augmented matrix of the system.

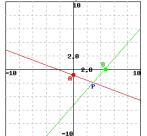
b. Find the matrix form of the system. $\begin{bmatrix} 1 \\ r \end{bmatrix} \begin{bmatrix} r \\ r \end{bmatrix}$

 $\begin{bmatrix} -- & -- \\ -- & -- \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -- \\ -- \end{bmatrix}$

c. Find matrices that satisfy the following matrix equation.



d. The graph below shows the lines determined by the two equations in our system:



Find the coordinates of

 $P = (_,_)$

Find the coordinates of y-intercept of the red line.

 $A = (0, __)$

Find the coordinates of x-intercept of the green line. $B = (_,0)$

Hint: (Instructor hint preview: show the student hint after 1 attempts. The current number of attempts is 0.)

For part d, note that you are given the equations of the red and green lines. If a point lies on a line, it must satisfy the equation for that line.

2. (1 pt) Library/Rochester/setLinearAlgebra9Dependence-/ur_la_9_10.pg

Express the vector $v = \begin{bmatrix} 26\\ 13 \end{bmatrix}$	as a linear combination of
$x = \begin{bmatrix} 6\\5 \end{bmatrix} \text{ and } y = \begin{bmatrix} 1\\3 \end{bmatrix}.$ $y = \underline{\qquad} x + \underline{\qquad} y.$	

3. (1 pt) local/Library/UI/LinearSystems/linearCombHW4.pg

Let
$$A = \begin{bmatrix} 1 & -1 & -3 \\ 4 & -2 & -10 \\ -2 & 1 & 5 \end{bmatrix}$$
 and $b = \begin{bmatrix} -1 \\ -11 \\ 5 \end{bmatrix}$

? 1. Determine if *b* is a linear combination of a_1 , a_2 and a_3 , the columns of the matrix *A*.

If it is a linear combination, determine a non-trivial linear relation - (a non-trivial relation is three numbers which are not all three zero.) Otherwise, enter 0's for the coefficients.

 $\underline{\qquad} a_1 + \underline{\qquad} a_2 + \underline{\qquad} a_3 = b.$

4. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.2.8.pg

Let
$$\mathbf{a}_1 = \begin{bmatrix} -6 \\ -1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} -24 \\ -4 \end{bmatrix}$.

Is **b** in the span of of \mathbf{a}_1 ?

- A. No, **b** is not in the span.
- B. Yes, **b** is in the span.
- C. We cannot tell if **b** is in the span.

Either fill in the coefficients of the vector equation, or enter "NONE" if no solution is possible.

5. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.2.10.pg

Let
$$\mathbf{a}_1 = \begin{bmatrix} -6\\4\\7 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} -7\\2\\9 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -31\\18\\37 \end{bmatrix}$.

Is **b** in the span of of \mathbf{a}_1 and \mathbf{a}_2 ?

- A. Yes, **b** is in the span.
- B. No, **b** is not in the span.
- C. We cannot tell if **b** is in the span.

Either fill in the coefficients of the vector equation, or enter "NONE" if no solution is possible.

$$\mathbf{b} = \underline{\quad} \mathbf{a}_1 + \underline{\quad} \mathbf{a}_2$$

6. (1 pt) local/Library/UI/LinearSystems/spanHW4.pg

Let
$$A = \begin{bmatrix} 1 & -2 & 5 \\ 5 & -11 & 27 \\ 1 & -5 & 12 \end{bmatrix}$$
, and $b = \begin{bmatrix} -4 \\ 2 \\ -4 \end{bmatrix}$.

Denote the columns of A by a_1 , a_2 , a_3 , and let $W = span\{a_1, a_2, a_3\}$.

- ? 1. Determine if *b* is in $\{a_1, a_2, a_3\}$
- ? 2. Determine if b is in W

How many vectors are in $\{a_1, a_2, a_3\}$? (For infinitely many, enter -1) _____

How many vectors are in W? (For infinitely many, enter -1)

7. (1 pt) Library/TCNJ/TCNJ_VectorEquations/problem4.pg								
	-1		1					
Let $u =$	5	and $v =$	-7					
	-3		4					

Find two vectors in $span\{u, v\}$ that are not multiples of u or v and show the weights on u and v used to generate them.

$$_$$
 $u+$ $_$ $v=$ $_$

 $__u + __v = ___$

8. (1 pt) Library/TCNJ/TCNJ_VectorEquations/problem6.pg Let $\vec{u} = \begin{bmatrix} 5 \\ -1 \\ 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} -10 \\ 1 \\ 0 \end{bmatrix}$. Find a vector \vec{w} not in span $\{\vec{u}, \vec{v}\}$.

$$\vec{w} = \begin{vmatrix} - \\ - \\ - \end{vmatrix}$$

9. (1 pt) Library/TCNJ/TCNJ_MatrixEquations/problem4.pg Let $A = \begin{bmatrix} -1 & 1 & 5 \\ -2 & 3 & 3 \\ -2 & -3 & 1 \end{bmatrix}$ and $x = \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}$.

? 1. What does Ax mean?

10. (1 pt) Library/Rochester/setLinearAlgebra9Dependence-/ur_la_9_8.pg Let $v_1 = \begin{bmatrix} 2 \\ 4 \\ -1 \end{bmatrix}$, $v_2 = \begin{bmatrix} -2 \\ -6 \\ -1 \end{bmatrix}$, and $y = \begin{bmatrix} 2 \\ 10 \\ h \end{bmatrix}$.

For what value of *h* is *y* in the plane spanned by v_1 and v_2 ? $h = ____$

11. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.2.31.pg

Let
$$A = \begin{bmatrix} 3 & 3\\ 5 & 4\\ -3 & 8 \end{bmatrix}$$
.

We want to determine if the system $A\mathbf{x} = \mathbf{b}$ has a solution for every $\mathbf{b} \in \mathbb{R}^3$.

Select the best answer.

- A. There is a solution for every **b** ∈ ℝ³ but we need to row reduce *A* to show this.
- B. There is a solution for every $\mathbf{b} \in \mathbb{R}^3$ since 2 < 3
- C. There is a not solution for every b ∈ ℝ³ but we need to row reduce A to show this.
- D. There is not a solution for every $\mathbf{b} \in \mathbb{R}^3$ since 2 < 3.

• E. We cannot tell if there is a solution for every $\mathbf{b} \in \mathbb{R}^3$.

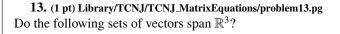
12. (1 pt) Library/TCNJ/TCNJ_VectorEquations/problem5.pg Let $H = span \{u, v\}$. For each of the following sets of vectors determine whether H is a line or a plane.

? 1.
$$u = \begin{bmatrix} -8 \\ -3 \\ -1 \end{bmatrix}$$
, $v = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,

? 2. $u = \begin{bmatrix} 4 \\ 4 \\ 4 \\ 4 \end{bmatrix}$, $v = \begin{bmatrix} -16 \\ -15 \\ -13 \end{bmatrix}$,

? 3. $u = \begin{bmatrix} 2 \\ -1 \\ -3 \\ 5 \\ 1 \\ -2 \end{bmatrix}$, $v = \begin{bmatrix} -8 \\ 4 \\ 12 \\ 13 \\ 2 \\ -2 \end{bmatrix}$,

? 4. $u = \begin{bmatrix} 5 \\ 1 \\ -2 \end{bmatrix}$, $v = \begin{bmatrix} 2 \\ -2 \\ 2 \\ -2 \end{bmatrix}$,



?1.
$$\begin{bmatrix} -1\\ 2\\ -2 \end{bmatrix}$$
,
 $\begin{bmatrix} -3\\ 6\\ -7 \end{bmatrix}$
,
 $\begin{bmatrix} -7\\ 14\\ -16 \end{bmatrix}$
,
 $\begin{bmatrix} -11\\ 22\\ -26 \end{bmatrix}$

?2.
 $\begin{bmatrix} 3\\ -2\\ 3 \end{bmatrix}$
,
 $\begin{bmatrix} -3\\ 2\\ -4 \end{bmatrix}$
,
 $\begin{bmatrix} -3\\ 2\\ -5 \end{bmatrix}$

?2.
 $\begin{bmatrix} 1\\ 1\\ -2\\ 3 \end{bmatrix}$
,
 $\begin{bmatrix} -3\\ -3\\ 7 \end{bmatrix}$
,
 $\begin{bmatrix} -3\\ -3\\ 7 \end{bmatrix}$

?3.
 $\begin{bmatrix} 1\\ 1\\ -3\\ 3 \end{bmatrix}$
,
 $\begin{bmatrix} -7\\ 5\\ 7 \end{bmatrix}$
,
 $\begin{bmatrix} -12\\ 7\\ 17 \end{bmatrix}$

14. (1 pt) Library/TCNJ/TCNJ_MatrixEquations/problem1.pg Show that the vectors

[1]		[1]		[1]
2	,	3	,	4
[1		1		1

do not span \mathbb{R}^3 by giving a vector not in their span.

If a linear system has four equations and seven variables, then it must have infinitely many solutions.

- A. True
- B. False

Every linear system with free variables has infinitely many solutions.

- A. True
- B. False

Any linear system with more variables than equations cannot have a unique solution.

- A. True
- B. False

If a linear system has the same number of equations and variables, then it must have a unique solution.

- A. True
- B. False

A vector *b* is a linear combination of the columns of a matrix *A* if and only if the equation Ax = b has at least one solution.

- A. True
- B. False

If the columns of an $m \times n$ matrix, A span \mathbb{R}^m , then the equation, Ax = b is consistent for each b in \mathbb{R}^m .

- A. True
- B. False

If A is an $m \times n$ matrix and if the equation Ax = b is inconsistent for some b in \mathbb{R}^m , then A cannot have a pivot position in every row.

- A. True
- B. False

Any linear combination of vectors can always be written in the form Ax for a suitable matrix A and vector x.

- A. True
- B. False

If the equation Ax = b is inconsistent, then b is not in the set spanned by the columns of A.

- A. True
- B. False

If *A* is an $m \times n$ matrix whose columns do not span \mathbb{R}^m , then the equation Ax = b is inconsistent for some *b* in \mathbb{R}^m .

- A. True
- B. False

The equation Ax = b is consistent if the augmented matrix [A b] has a pivot position in every row.

- A. True
- B. False

If the augmented matrix $[A \ b]$ has a pivot position in every row, then the equation Ax = b is inconsistent.

- A. True
- B. False

16. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.2.56.pg

What conditions on a matrix *A* insures that $A\mathbf{x} = \mathbf{b}$ has a solution for all **b** in \mathbb{R}^n ?

Select the best statement. (The best condition should work with any positive integer n.)

- A. The equation will have a solution for all **b** in \mathbb{R}^n as long as the columns of *A* do not include the zero column.
- B. The equation will have a solution for all **b** in ℝⁿ as long as the columns of *A* span ℝⁿ.
- C. There is no easy test to determine if the equation will have a solution for all **b** in \mathbb{R}^n .
- D. The equation will have a solution for all **b** in \mathbb{R}^n as long as no column of *A* is a scalar multiple of another column.

• E. none of the above

17. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.2.57.pg

Assume $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ spans \mathbb{R}^3 . Select the best statement.

- A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 unless \mathbf{u}_4 is the zero vector.
- B. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ always spans \mathbb{R}^3 .
- C. There is no easy way to determine if $\{u_1, u_2, u_3, u_4\}$ spans \mathbb{R}^3 .
- D. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ never spans \mathbb{R}^3 .
- E. {**u**₁, **u**₂, **u**₃, **u**₄} spans \mathbb{R}^3 unless **u**₄ is a scalar multiple of another vector in the set.
- F. none of the above

18. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.2.58.pg

Assume $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ does not span \mathbb{R}^3 . Select the best statement.

- A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ may, but does not have to, span \mathbb{R}^3 .
- B. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ never spans \mathbb{R}^3 .
- C. {**u**₁, **u**₂, **u**₃, **u**₄} spans ℝ³ unless **u**₄ is a scalar multiple of another vector in the set.
- D. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 unless \mathbf{u}_4 is the zero vector.
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ always spans \mathbb{R}^3 .
- F. none of the above

19. (1 pt) Library/TCNJ/TCNJ_SolutionSetsLinearSystems-/problem8.pg

Suppose the solution set of a certain system of equations can be described as $x_1 = 4 - 6t$, $x_2 = 4 + 6t$, $x_3 = 4t - 3$, $x_4 = -6 - 4t$, where *t* is a free variable. Use vectors to describe this solution set as a line in \mathbb{R}^4 .

$$L(t) = \begin{bmatrix} -- \\ -- \\ -- \\ -- \end{bmatrix} + t \begin{bmatrix} -- \\ -- \\ -- \\ -- \end{bmatrix}.$$

20. (1 pt) Library/NAU/setLinearAlgebra/HomLinEq.pg Solve the equation

$$-6x - 2y + 9z = 0$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = s \begin{bmatrix} - & \\ - & \\ - & \end{bmatrix} + t \begin{bmatrix} - & \\ - & \\ - & \end{bmatrix}$$

21. (1 pt) local/Library/UI/LinearSystems/ur_la_1_19AxB.pg Solve the system

$$\begin{cases} 4x_1 - 3x_2 + 4x_3 + 4x_4 = 0\\ -x_1 + x_2 + 3x_3 + 3x_4 = 0\\ 3x_1 - 2x_2 + 7x_3 + 7x_4 = 0\\ 3x_1 - 3x_2 - 9x_3 - 9x_4 = 0 \end{cases}$$
$$\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix} = + \begin{bmatrix} -\\ -\\ -\\ -\\ -\\ - \end{bmatrix} s + \begin{bmatrix} -\\ -\\ -\\ -\\ -\\ -\\ - \end{bmatrix} t.$$

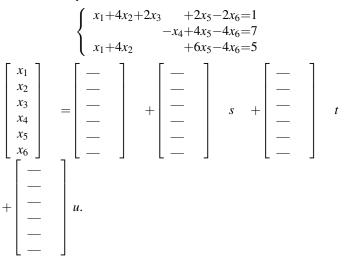
Solve the system

If the matrix A corresponds to the coefficient matrix for the above system of equations, then given any vector \vec{b} , the matrix equation $A\vec{x} = \vec{b}$ will always has an infinite number of solutions.

- A. True
- B. False

22. (1 pt) local/Library/UI/LinearSystems/ur_la_1_20vv3.pg Solve the system

Solve the system



Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

If the matrix A corresponds to the coefficient matrix for the above system of equations, then given any vector \vec{b} , the matrix equation $A\vec{x} = \vec{b}$ will always has an infinite number of solutions.

- A. True
- B. False