Use Cramer's rule to solve the following system of equations for x :

$$
\begin{array}{r}
22 x-4 y=-38 \\
-5 x+1 y=9
\end{array}
$$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

2. (1 pt) Library/ma112DB/set12/sw7_6_33.pg

Use Cramer's rule to solve the system

$$
\begin{aligned}
& x-y+2 z=-6 \\
& 3 x+z=-2 \\
& -x+2 y=4
\end{aligned}
$$

$x=$ \qquad
$y=$ \qquad
$z=$ \qquad
3. (1 pt) Library/Rochester/setLinearAlgebra6Determinants/ur_la_6.24.pg
Let $A=\left[\begin{array}{cc}-1 & 3 \\ 2 & -5\end{array}\right]$.
Find the following:
(a) $\operatorname{det}(A)=$ \qquad
(b) the matrix of cofactors $C=\left[\begin{array}{ll}\square & - \\ \square & -\end{array}\right]$,
(c) $\operatorname{adj}(A)=\left[\begin{array}{ll}\square & -\end{array}\right]$,
(d) $A^{-1}=\left[\begin{array}{ll}\square & -\end{array}\right]$.
4. ($\left.\begin{array}{l}1 \\ \mathrm{pt}\end{array}\right) \quad$ Library/Rochester/setLinearAlgebra6Determinants/ur_la_6_26.pg
Let $A=\left[\begin{array}{cc}-5 e^{3 t} & -4 e^{4 t} \\ 2 e^{3 t} & 3 e^{4 t}\end{array}\right]$.
Find the following:
(a) $\operatorname{det}(A)=$ \qquad
(b) the matrix of cofactors $C=\left[\begin{array}{ll}\square & \square\end{array}\right]$,
(c) $\operatorname{adj}(A)=\left[\begin{array}{ll}\square & \square\end{array}\right]$,
(d) $A^{-1}=\left[\begin{array}{ll}\square & \square\end{array}\right]$.
5. (1 pt) Library/Rochester/setLinearAlgebra6Determinants/ur」a_6.25.pg
Let $A=\left[\begin{array}{ccc}-2 & -2 & 1 \\ -1 & 1 & -2 \\ 1 & 2 & -1\end{array}\right]$.
Find the following:
(a) $\operatorname{det}(A)=\longrightarrow$,
(b) the matrix of cofactors $C=\left[\begin{array}{lll}\square & - & - \\ \square & - & - \\ \square & - & -\end{array}\right]$,
(c) $\operatorname{adj}(A)=\left[\begin{array}{lll}\square & \square & \square \\ \square & - & \square\end{array}\right]$,
(d) $A^{-1}=\left[\begin{array}{lll}\square & \square & - \\ \square & - & - \\ \square & - & -\end{array}\right]$.
6. (1 pt) Library/Rochester/setLinearAlgebra11Eigenvalues-
/ur_la_11_17.pg
The matrix $A=\left[\begin{array}{cc}11 & -2 \\ 2 & 7\end{array}\right]$
has one eigenvalue of multiplicity 2 . Find this eigenvalue and the dimenstion of the eigenspace.
eigenvalue = \qquad
dimension of the eigenspace $=$ \qquad
7. (1 pt) Library/Rochester/setLinearAlgebra11Eigenvalues/ur_la_11_18.pg
The matrix $A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 2 & 0 & -1\end{array}\right]$
has one real eigenvalue. Find this eigenvalue and a basis of the eigenspace.
eigenvalue $=$
Basis: $\left[\begin{array}{l}- \\ -\end{array}\right],\left[\begin{array}{l}- \\ -\end{array}\right]$.
8. (1 pt) Library/Rochester/setLinearAlgebra11Eigenvalues/ur_la_11_19.pg
The matrix $A=\left[\begin{array}{ccc}0 & 0 & 0 \\ -5 & 5 & 0 \\ 5 & -5 & 0\end{array}\right]$
has two real eigenvalues, one of multiplicity 1 and one of multiplicity 2 . Find the eigenvalues and a basis of each eigenspace. $\lambda_{1}=$ \qquad has multiplicity 1 ,

Generated by ©(C)WeBWorK, http://webwork.maa.org, Mathematical Association of America

