Calculate the determinant of $\left[\begin{array}{cc}-4.66666666666667 & 2 \\ -6 & 3\end{array}\right]$.

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. 5

Correct Answers:

- C

2. (1 pt) local/Library/UI/Fall14/HW8_2.pg

Evaluate the following 3×3 determinant. Use the properties of determinants to your advantage.

$$
\left|\begin{array}{ccc}
-2 & 0 & -4 \\
-6 & 0 & 6 \\
-9 & 0 & 4
\end{array}\right|
$$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Does the matrix have an inverse?

- A. No
- B. Yes

3. (1 pt) local/Library/UI/Fal114/HW8_3.pg

Given the matrix

$$
\left[\begin{array}{rrr}
-5 & 0 & 2 \\
0 & -1 & -5 \\
0 & 0 & 5
\end{array}\right]
$$

(a) find its determinant

- A. 25
- B. -5
- C. -4
- D. -2
- E. -1
- F. 0
- G. 1
- H. 3
- I. 5
- J. 7
- K. None of those above
(b) does the matrix have an inverse?
- A. No
- B. Yes

Correct Answers:

- A
- B

4. (1 pt) local/Library/UI/Fall14/HW8_4.pg

If A and B are 4×4 matrices, $\operatorname{det}(A)=4, \operatorname{det}(B)=-3$, then $\operatorname{det}(A B)=$

- A. -15
- B. -12
- C. -11
- D. -8
- E. -5
- F. 0
- G. 3
- H. 6
- I. 8
- J. 12
- K. None of those above
$\operatorname{det}(2 A)=$
- A. -40
- B. 64
- C. -28
- D. -21
- E. -10
- F. -1
- G. 10
- H. 21
- I. 28
- J. 36
- K. 40
- L. None of those above
$\operatorname{det}\left(A^{T}\right)=$
- A. -3
- B. -2
- C. -1
- D. 0
- E. 1
- F. 2
- G. 3
- H. 4
- I. None of those above
$\operatorname{det}\left(B^{-1}\right)=$
- A. -0.5
- B. -0.4
- C. -0.333333333333333
- D. 0
- E. -0.333333333333333
- F. 0.4
- G. 0.5
- H. 1
- I. None of those above
$\operatorname{det}\left(B^{4}\right)=$
- A. -81
- B. -36
- C. -12
- D. 0
- E. 12
- F. 36
- G. 81
- H. 1024
- I. None of those above

Correct Answers:

$$
\begin{array}{ll}
\bullet & \mathrm{B} \\
\bullet & \mathrm{~B} \\
\bullet & \mathrm{H} \\
\text { - } & \mathrm{E} \\
\bullet & \mathrm{G}
\end{array}
$$

5. (1 pt) local/Library/UI/Fal14/HW8_5.pg

Find the determinant of the matrix

$$
A=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
-3 & 2 & 0 & 0 \\
8 & -4 & 4 & 0 \\
-7 & -2 & -8 & -5
\end{array}\right]
$$

$\operatorname{det}(\bar{A})=$

- A. -400
- B. -360
- C. -288
- D. -120
- E. 0
- F. 120
- G. 40
- H. 240
- I. 360
- J. 400
- K. None of those above

Correct Answers:

- G

6. (1 pt) local/Library/UI/problem7.pg
A and B are $n \times n$ matrices.

Adding a multiple of one row to another does not affect the determinant of a matrix.

- A. True
- B. False

If the columns of A are linearly dependent, then $\operatorname{det} A=0$.

- A. True
- B. False

$$
\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B
$$

- A. True
- B. False

Correct Answers:

- A
- A
- B

7. (1 pt) local/Library/UI/Fal114/HW8_7.pg

Suppose that a 4×4 matrix A with rows v_{1}, v_{2}, v_{3}, and v_{4} has determinant $\operatorname{det} A=-4$. Find the following determinants:
$B=\left[\begin{array}{c}v_{1} \\ v_{2} \\ v_{3} \\ 2 v_{4}\end{array}\right] \operatorname{det}(B)=$

- A. -18
- B. -15
- C. -12
- D. -8
- E. -9
- F. 0
- G. 9
- H. 12
- I. 15
- J. 18
- K. None of those above
$C=\left[\begin{array}{l}v_{4} \\ v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \operatorname{det}(C)=$
- A. -18
- B. 4
- C. -9
- D. -3
- E. 0
- F. 3
- G. 9
- H. 12
- I. 18
- J. None of those above
$D=\left[\begin{array}{c}v_{1} \\ v_{2} \\ v_{3}+6 v_{4} \\ v_{4}\end{array}\right]$
$\operatorname{det}(D)=$
- A. -18
- B. -4
- C. -9
- D. -3
- E. 0
- F. 3
- G. 9
- H. 12
- I. 18
- J. None of those above

Correct Answers:

- D
- B
- B

8. (1 pt) local/Library/UI/Fall14/HW8_8.pg

Use determinants to determine whether each of the following sets of vectors is linearly dependent or independent.
$\left[\begin{array}{c}7 \\ -4\end{array}\right],\left[\begin{array}{c}-1 \\ -9\end{array}\right]$,

- A. Linearly Dependent
- B. Linearly Independent
$\left[\begin{array}{c}1 \\ 5 \\ -1\end{array}\right],\left[\begin{array}{c}-2 \\ -13 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 3\end{array}\right]$,
- A. Linearly Dependent
- B. Linearly Independent
$\left[\begin{array}{l}-3 \\ -9\end{array}\right],\left[\begin{array}{l}-3 \\ -9\end{array}\right]$,
- A. Linearly Dependent
- B. Linearly Independent
$\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}-2 \\ -6 \\ -8\end{array}\right],\left[\begin{array}{c}3 \\ 9 \\ 12\end{array}\right]$,
- A. Linearly Dependent
- B. Linearly Independent

Correct Answers:

- B
- B
- A
- A

9. (1 pt) local/Library/UI/Fall14/HW8_10.pg

$$
A=\left[\begin{array}{rrrr}
3 & 3 & 0 & -9 \\
5 & -9 & 0 & 0 \\
0 & -9 & 0 & 0 \\
-2 & 1 & -3 & -9
\end{array}\right]
$$

The determinant of the matrix is

- A. -1890
- B. -1024
- C. -630
- D. 1215
- E. -210
- F. 0
- G. 324
- H. 630
- I. 1024
- J. None of those above

Hint: Find a good row or column and expand by minors.
Correct Answers:

- D

10. (1 pt) local/Library/UI/Fal14/HW8_11.pg

Find the determinant of the matrix
$M=\left[\begin{array}{ccccc}2 & 0 & 0 & 2 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 & -1 \\ 0 & 0 & 0 & 2 & -2 \\ 0 & 3 & 1 & 0 & 0\end{array}\right]$.
$\operatorname{det}(M)=$
$\operatorname{det}(M)=$

- A. -48
- B. -35
- C. -20
- D. -5
- E. 5
- F. 18
- G. 20
- H. 81
- I. None of those above

Correct Answers:

- C

11. (1 pt) local/Library/UI/Fall14/HW8_12.pg

$$
A=\left[\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}\right]
$$

And now for the grand finale: The determinant of the matrix is

- A. -362880
- B. -5
- C. 0
- D. 5
- E. 20
- F. 30
- G. 40
- H. 362880
- I. None of the above

Hint: Remember that a square linear system has a unique solution if the determinant of the coefficient matrix is non-zero.

Solution: (Instructor solution preview: show the student solution after due date.)

Solution: Since all the rows are the same a linear system with A as its coefficient matrix cannot have a unique solution and therefore the determinant of A is zero.

Correct Answers:

- C

12. (1 pt) local/Library/UI/4.3.1a.pg

Find bases for the column space and the null space of matrix A. You should verify that the Rank-Nullity Theorem holds. An equivalent echelon form of matrix A is given to make your work easier.
$A=\left[\begin{array}{ccc}1 & 2 & 9 \\ 3 & 3 & 18 \\ 2 & 6 & 24\end{array}\right]\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right]$

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION:

A basis for the column space, determined from the pivot columns 1 and 2 , is

Solve $A \mathbf{x}=\mathbf{0}$, to obtain $\mathbf{x}=s\left[\begin{array}{c}-3 \\ -3 \\ 1\end{array}\right]$, and so the nullspace basis is $\left\{\left[\begin{array}{c}-3 \\ -3 \\ 1\end{array}\right]\right\}$.

Correct Answers:

-
(\displaystyle\left. \begin\{array\} } \{ c \}
$\backslash \operatorname{mbox}\{1\} \backslash c r$
$\backslash \operatorname{mbox}\{3\} \backslash c r$
$\backslash \operatorname{mbox}\{2\} \backslash c r$
\end } \{ array \} \backslash r i g h t . \backslash) , \backslash (\backslash displaystyle\left. \begin\{array \{ ©
$\backslash \operatorname{mbox}\{2\} \backslash c r$
$\backslash \operatorname{mbox}\{3\} \backslash c r$
$\backslash \operatorname{mbox}\{6\} \backslash c r$
\end\{array\} \right. \) }
-
(\displaystyle\left. \begin\{array\}\{c\} }
$\backslash \operatorname{mbox}\{-3\} \backslash \mathrm{cr}$
$\backslash \operatorname{mbox}\{-3\} \backslash \mathrm{cr}$
$\backslash \operatorname{mbox}\{1\} \backslash \mathrm{cr}$
\end\{array\}\right. \) }

13. (1 pt) local/Library/UI/4.3.3.pg

Find bases for the column space and the null space of matrix A. You should verify that the Rank-Nullity Theorem holds. An equivalent echelon form of matrix A is given to make your work

$$
A=\left[\begin{array}{cccc}
1 & 0 & -4 & -3 \\
-2 & 1 & 13 & 5 \\
0 & 1 & 5 & -1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & -4 & -3 \\
0 & 1 & 5 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Basis for the column space of $A=\left[\begin{array}{ll}- & \\ - & \\ - & {\left[\begin{array}{l}- \\ - \\ -\end{array}\right]} \\ \text { Basis for the null space of } A=\left[\begin{array}{l}- \\ - \\ -\end{array}\right]\left[\begin{array}{l}- \\ - \\ - \\ -\end{array}\right]\end{array}{ }_{l} \quad \begin{array}{l} \\ -\end{array}\right]$
Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION:

A basis for the column space, determined from the pivot columns 1 and 2 , is
$\left\{\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$

Solve $A \mathbf{x}=\mathbf{0}$, to obtain $\mathbf{x}=s_{1}\left[\begin{array}{c}+4 \\ -5 \\ 1 \\ 0\end{array}\right]+s_{2}\left[\begin{array}{c}+3 \\ +1 \\ 0 \\ 1\end{array}\right]$, and so the nullspace basis is $\left\{\left[\begin{array}{c}+4 \\ -5 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}+3 \\ +1 \\ 0 \\ 1\end{array}\right]\right\}$.

Correct Answers:

-
(\displaystyle\left. \begin\{array\}\{c\} } $\backslash \operatorname{mbox}\{1\}$ \cr $\backslash \operatorname{mbox}\{-2\} \backslash \mathrm{cr}$
$\backslash \operatorname{mbox}\{0\} \backslash \mathrm{cr}$ \end\{array\} \right. \) , $\displaystyle\left. \begin\{array\} \{c } \(\backslash \operatorname{mbox}\{0\} \backslash c r$ $\backslash \operatorname{mbox}\{1\} \backslash \mathrm{cr}$ $\backslash \operatorname{mbox}\{1\} \backslash \mathrm{cr}$ \end\{array\} \right. \) }

(\displaystyle\left. \begin\{array\} \{c \} }
$\backslash m b o x\{4\} \backslash c r$
$\backslash \operatorname{mbox}\{-5\} \backslash \mathrm{cr}$
$\backslash \operatorname{mbox}\{1\} \backslash \mathrm{cr}$
$\backslash m b o x\{0\}$ \cr
\end\{array\} \right. \) , $\displaystyle\left. \begin\{array\} \{c }
\(\backslash \operatorname{mbox}\{3\} \backslash c r$
$\backslash \operatorname{mbox}\{1\} \backslash \mathrm{cr}$
\backslash mbox $\{0\}$ \cr
$\backslash \operatorname{mbox}\{1\} \backslash \mathrm{cr}$
\end\{array\} \right. \) }

14. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_30.pg

Find a basis of the column space of the matrix
$A=\left[\begin{array}{cccc}-2 & -2 & 0 & -1 \\ 0 & 2 & -2 & -2 \\ -2 & -2 & 0 & -1\end{array}\right]$.
$\left[\begin{array}{l}- \\ - \\ \overline{\text { Correct Answers: }}\end{array}\right],\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$
Correct Answers:

-
(\displaystyle\left. \begin\{array\}\{c\} }
$\backslash m b o x\{0\} \backslash c r$
\backslash mbox $\{-2\} \backslash \mathrm{cr}$
$\backslash m b o x\{0\} \backslash c r$
\end\{array\} } \backslash right. \) , \(\displaystyle\left. \begin\{array\} \{c $\backslash m b o x\{-2\} \backslash c r$
\backslash mbox $\{0\}$ \cr
$\backslash m b o x\{-2\} \backslash c r$ \end\{array\} \right. \) }

15. (1 pt) Library/WHFreeman/Holtlinear_algebra/Chaps_1-4/4.1.27.pg

Find the null space for $A=\left[\begin{array}{cc}1 & 1 \\ -7 & -6 \\ -6 & -2\end{array}\right]$
What is null (A) ?

- A. $\operatorname{span}\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$
- B. \mathbb{R}^{3}
- C. $\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -7 \\ -6\end{array}\right]\right\}$
- D. \mathbb{R}^{2}
- E. $\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
- F. $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$
- G. $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
- H. none of the above

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

A is row reduces to $\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$. The basis of the null space has one element for each column without a leading one in the row reduced matrix.
Thus $A \mathbf{x}=\mathbf{0}$ has a zero dimentional null space, and $\operatorname{null}(A)$ is the zero vector $\left[\begin{array}{l}0 \\ 0\end{array}\right]$.

Correct Answers:

- G

16. (1 pt) local/Library/UI/4.1.23.pg

Find the null space for $A=\left[\begin{array}{ccc}1 & 0 & -3 \\ 0 & 1 & 8\end{array}\right]$.
What is $\operatorname{null}(A)$?

- A. $\operatorname{span}\left\{\left[\begin{array}{l}-8 \\ +3\end{array}\right]\right\}$
- B. $\operatorname{span}\left\{\left[\begin{array}{c}-8 \\ +3 \\ 1\end{array}\right]\right\}$
- C. \mathbb{R}^{2}
- D. \mathbb{R}^{3}
- E. $\operatorname{span}\left\{\left[\begin{array}{c}1 \\ 0 \\ +3\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -8\end{array}\right]\right\}$
- F. $\operatorname{span}\left\{\left[\begin{array}{c}+3 \\ -8 \\ 1\end{array}\right]\right\}$
- G. $\operatorname{span}\left\{\left[\begin{array}{l}+3 \\ -8\end{array}\right]\right\}$
- H. none of the above

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

A is row reduced. The basis of the null space has one element for each column without a leading one in the row reduced matrix.
Thus $A \mathbf{x}=\mathbf{0}$ has a one dimentional null space,
and thus, $\operatorname{null}(A)$ is the subspace generated by $\left[\begin{array}{c}1-3 \\ 18 \\ 1\end{array}\right]$.
Correct Answers:

- F

17. ($\mathbf{(1} \mathrm{pt})$ Library/WHFreeman/Holt_linear_algebra/Chaps_1-414.3.47.pg

Indicate whether the following statement is true or false.
? 1. If A and B are equivalent matrices, then $\operatorname{col}(A)=\operatorname{col}($ B).

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION:
FALSE. Consider $A=\left[\begin{array}{lll}2 & 3 & 4 \\ 2 & 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{lll}2 & 3 & 4 \\ 0 & 0 & 0\end{array}\right]$
Correct Answers:

- F

18. (1 pt) local/Library/UI/Fall14/HW7_27.pg

Determine the rank and nullity of the matrix.
$\left[\begin{array}{cccc}2 & -1 & 0 & 1 \\ 5 & 2 & 1 & -4 \\ -1 & -4 & -1 & 6 \\ -8 & -5 & -2 & 9\end{array}\right]$

The rank of the matrix is

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

The nullity of the matrix is

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION:

When reduced to row-echelon form, there are two non-zero rows, so the rank of the matrix is 2 and the nullity is 2 .
$\left[\begin{array}{cccc}2 & -1 & 0 & 1 \\ 5 & 2 & 1 & -4 \\ -1 & -4 & -1 & 6 \\ -8 & -5 & -2 & 9\end{array}\right] \sim\left[\begin{array}{cccc}1 & 4 & 1 & -6 \\ 0 & 9 & 2 & -13 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
Correct Answers:

- G
- G

