1. (1 pt) local/Library/UI/Fall14/HW7_4.pg

Determine if the subset of \mathbb{R}^{2} consisting of vectors of the form $\left[\begin{array}{l}a \\ b\end{array}\right]$, where a and b are integers, is a subspace.

Select true or false for each statement.
The set contains the zero vector

- A. True
- B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

- A. True
- B. False

This set is a subspace

- A. True
- B. False

2. (1 pt) local/Library/UI/Fall14/HW7_5.pg

Determine if the subset of \mathbb{R}^{3} consisting of vectors of the form $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$, where $a \geq 0, b \geq 0$, and $c \geq 0$ is a subspace.

Select true or false for each statement.
The set contains the zero vector

- A. True
- B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

- A. True
- B. False

This set is a subspace

- A. True
- B. False

3. (1 pt) local/Library/UI/Fall14/HW7_6.pg

If A is an $n \times n$ matrix and $\mathbf{b} \neq 0$ in \mathbb{R}^{n}, then consider the set of solutions to $A \mathbf{x}=\mathbf{b}$.

Select true or false for each statement.
The set contains the zero vector

- A. True
- B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

- A. True
- B. False

This set is a subspace

- A. True
- B. False

4. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-
14.1.77.pg

The null space for the matrix $\left[\begin{array}{ccccc}1 & 7 & -2 & 14 & 0 \\ 3 & 0 & 1 & -2 & 3 \\ 6 & 1 & -1 & 0 & 4\end{array}\right]$ is spanA, B where $\mathrm{A}=\left[\begin{array}{l}\square \\ \square \\ \square\end{array}\right] \mathrm{B}=\left[\begin{array}{l}\square \\ \square \\ \square \\ \square\end{array}\right]$
5. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_26.pg Find a basis of the subspace of \mathbb{R}^{4} defined by the equation $-7 x_{1}-3 x_{2}-8 x_{3}-8 x_{4}=0$.
$\left[\begin{array}{l}- \\ - \\ -\end{array}\right],\left[\begin{array}{l}- \\ - \\ -\end{array}\right],\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$.

6. (1 pt) local/Library/UI/6a.pg

The null space for the matrix $\left[\begin{array}{ccc}2 & 0 & 5 \\ -1 & 6 & 2 \\ 4 & 4 & -1 \\ 5 & 1 & 0 \\ 4 & 1 & 1\end{array}\right]$
is $\left[\begin{array}{l}\square \\ \square\end{array}\right]$
7. ($\mathbf{1} \quad \mathrm{pt})$ Library/WHFreeman/Holt_linear_algebra/Chaps_1-414.2.32a.pg

Find a basis for the null space of matrix A.
$A=\left[\begin{array}{ccccc}1 & 0 & -4 & 5 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 3\end{array}\right]$

Basis $=\left[\begin{array}{l}- \\ - \\ - \\ -\end{array}\right]\left[\begin{array}{l}- \\ - \\ - \\ -\end{array}\right]$
8. ($\left.\begin{array}{l}1 \\ \mathrm{pt}\end{array}\right)$ local/Library/Rochester/setLinearAlgebra3Matrices/ur_la_3_14.pg
Find the ranks of the following matrices.
$\operatorname{rank}\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 \\ 8 & 0 & 0 & 0\end{array}\right]=-$
$\operatorname{rank}\left[\begin{array}{ccc}-1 & 0 & -4 \\ 1 & 6 & 0 \\ -9 & 0 & 0\end{array}\right]=-$
$\operatorname{rank}\left[\begin{array}{ccc}6 & 1 & -6 \\ 0 & 9 & 0 \\ -4 & 0 & 4\end{array}\right]=-$
9. (1 pt) local/Library/UI/Fall14/HW7_11.pg

Find all values of x for which $\operatorname{rank}(A)=2$.

$$
\begin{aligned}
\text { A } & =\left[\begin{array}{cccc}
2 & 1 & 0 & 7 \\
-2 & 2 & \mathrm{x} & -7 \\
3 & 7 & 4 & 28
\end{array}\right] \\
x & = \\
& \text { - A. }-4 \\
& \text { - B. }-3 \\
& \text { - C. }-2 \\
& \text { - D. }-1 \\
& \text { - E. } 0 \\
& \text { - F. } 1 \\
& \text { - G. } 2 \\
& \text { - H. } 3 \\
& \text { - I. } 4 \\
& \text { - J. none of the above }
\end{aligned}
$$

10. (1 pt) local/Library/UI/Fal114/HW7_12.pg

Suppose that A is a 8×6 matrix which has a null space of dimension 6. The rank of $A=$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Suppose A is a 5×4 matrix. If rank of $A=1$, then nullity of $A=$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

The vector \vec{b} is NOT in ColA if and only if $A \vec{v}=\vec{b}$ does NOT have a solution

- A. True
- B. False

The vector \vec{b} is in ColA if and only if $A \vec{v}=\vec{b}$ has a solution

- A. True
- B. False

The vector \vec{v} is in NulA if and only if $A \vec{v}=\overrightarrow{0}$

- A. True
- B. False

If the equation $A \vec{x}=\overrightarrow{b_{1}}$ has at least one solution and if the equation $A \vec{x}=\overrightarrow{b_{2}}$ has at least one solution, then the equation $A \vec{x}=-1 \overrightarrow{b_{1}}-3 \overrightarrow{b_{2}}$ also has at least one solution.

- A. True
- B. False

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0 .)
Is $\operatorname{col} A$ a subspace? Is $\operatorname{col} A$ closed under linear combinations?
If \vec{x}_{1} and $\overrightarrow{x_{2}}$ are solutions to $A \vec{x}=\overrightarrow{0}$, then $8 \overrightarrow{x_{1}}-1 \overrightarrow{x_{2}}$ is also a solution to $A \vec{x}=\overrightarrow{0}$.

- A. True
- B. False

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0 .)
Is $N u l A$ a subspace? Is $N u l A$ closed under linear combinations?

If $\overrightarrow{x_{1}}$ and $\overrightarrow{x_{2}}$ are solutions to $A \vec{x}=\vec{b}$, then $2 \overrightarrow{x_{1}}-9 \overrightarrow{x_{2}}$ is also a solution to $A \vec{x}=\vec{b}$.

- A. True
- B. False

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0 .)
Is the solution set to $A \vec{x}=\vec{b}$ a subspace even when \vec{b} is not $\overrightarrow{0}$? Is the solution set to $A \vec{x}=\vec{b}$ closed under linear combinations even when \vec{b} is not $\overrightarrow{0}$?

Suppose A is a 4×2 matrix. Then nul A is a subspace of R^{k} where $k=$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Suppose A is a 2×6 matrix. Then $\operatorname{col} A$ is a subspace of R^{k} where $k=$

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

20. ($\mathbf{1} \mathrm{pt})$ Library/TCNJ/TCNJ_BasesLinearlyIndependentSet/problem5.pg
Let W_{1} be the set: $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
Determine if W_{1} is a basis for \mathbb{R}^{3} and check the correct answer(s) below.

- A. W_{1} is a basis.
- B. W_{1} is not a basis because it does not span \mathbb{R}^{3}.
- C. W_{1} is not a basis because it is linearly dependent.

Let W_{2} be the set: $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
Determine if W_{2} is a basis for \mathbb{R}^{3} and check the correct answer(s) below.

- A. W_{2} is not a basis because it does not span \mathbb{R}^{3}.
- B. W_{2} is a basis.
- C. W_{2} is not a basis because it is linearly dependent.

21. (1 pt) local/Library/UI/Fall14/HW7_25.pg

Indicate whether the following statement is true or false?
If $S=\operatorname{span} u_{1}, u_{2}, u_{3}$, then $\operatorname{dim}(S)=3$.

- A. True
- B. False

22. (1 pt) local/Library/TCNJ/TCNJ_BasesLinearlyIndependentSet/3.pg
Check the true statements below:

- A. The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^{n}.
- B. If $H=\operatorname{Span}\left\{b_{1}, \ldots, b_{p}\right\}$, then $\left\{b_{1}, \ldots, b_{p}\right\}$ is a basis for H.
- C. If B is an echelon form of a matrix A, then the pivot columns of B form a basis for ColA.
- D. The column space of a matrix A is the set of solutions of $A x=b$.
- E. A basis is a spanning set that is as large as possible.

23. (1 pt) local/Library/UI/4.3.1a.pg

Find bases for the column space and the null space of matrix A. You should verify that the Rank-Nullity Theorem holds. An equivalent echelon form of matrix A is given to make your work easier.
$A=\left[\begin{array}{lll}1 & 2 & 12 \\ 3 & 3 & 21 \\ 3 & 8 & 46\end{array}\right]\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 0\end{array}\right]$

24. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/4.1.22.pg

Find the null space for $A=\left[\begin{array}{cc}3 & 2 \\ 1 & -9\end{array}\right]$.
What is null(A)?

- A. $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$
- B. $\operatorname{span}\left\{\left[\begin{array}{l}3 \\ 1\end{array}\right]\right\}$
- C. \mathbb{R}^{2}
- D. $\operatorname{span}\left\{\left[\begin{array}{c}-2 \\ 3\end{array}\right]\right\}$
- E. $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
- F. $\operatorname{span}\left\{\left[\begin{array}{c}-1 \\ 3\end{array}\right]\right\}$
- G. $\operatorname{span}\left\{\left[\begin{array}{l}3 \\ 2\end{array}\right]\right\}$
- H. none of the above

25. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-414.1.30.pg

Find the null space for $A=\left[\begin{array}{ccc}2 & -3 & 7 \\ 6 & 3 & -15 \\ 3 & 5 & -18\end{array}\right]$.
What is $\operatorname{null}(A)$?

- A. $\operatorname{span}\left\{\left[\begin{array}{c}2 \\ -3 \\ 7\end{array}\right],\left[\begin{array}{c}6 \\ 3 \\ -15\end{array}\right]\right\}$
- B. \mathbb{R}^{3}
- C. $\operatorname{span}\left\{\left[\begin{array}{c}2 \\ -3 \\ 7\end{array}\right]\right\}$
- D. $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]\right\}$
- E. $\operatorname{span}\left\{\left[\begin{array}{l}2 \\ 6 \\ 3\end{array}\right]\right\}$
- F. span $\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
- G. none of the above

26. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-414.1.28.pg

Find the null space for $A=\left[\begin{array}{cc}2 & 6 \\ 7 & 21 \\ 4 & 12\end{array}\right]$.
What is null (A) ?

- A. \mathbb{R}^{3}
- B. $\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
- C. \mathbb{R}^{2}
- D. $\operatorname{span}\left\{\left[\begin{array}{c}12 \\ 4\end{array}\right]\right\}$
- E. $\operatorname{span}\left\{\left[\begin{array}{c}-3 \\ 1\end{array}\right]\right\}$
- F. $\operatorname{span}\left\{\left[\begin{array}{l}2 \\ 7 \\ 4\end{array}\right]\right\}$
- G. $\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
- H. none of the above

27. (1 pt) local/Library/UI/4.3.3.pg

Find bases for the column space and the null space of matrix A. You should verify that the Rank-Nullity Theorem holds. An equivalent echelon form of matrix A is given to make your work easier.
$A=\left[\begin{array}{cccc}1 & 0 & -5 & -4 \\ -2 & 1 & 15 & 7 \\ 0 & 1 & 5 & -1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & -5 & -4 \\ 0 & 1 & 5 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$
Basis for the column space of $A=\left[\begin{array}{ll}- & \\ - &]\end{array}\right]\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$
Basis for the null space of $A=\left[\begin{array}{l}- \\ - \\ -\end{array}\right]\left[\begin{array}{l}- \\ - \\ - \\ -\end{array}\right]$

