1. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.3.40.pg

Let \mathbf{S} be a set of m vectors in \mathbb{R}^{n} with $m>n$.
Select the best statement.

- A. The set \mathbf{S} is linearly independent, as long as it does not include the zero vector.
- B. The set \mathbf{S} is linearly dependent.
- C. The set \mathbf{S} is linearly independent, as long as no vector in \mathbf{S} is a scalar multiple of another vector in the set.
- D. The set \mathbf{S} is linearly independent.
- E. The set \mathbf{S} could be either linearly dependent or linearly independent, depending on the case.
- F. none of the above

2. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-412.3.41.pg

Let A be a matrix with more rows than columns.
Select the best statement.

- A. The columns of A are linearly independent, as long as no column is a scalar multiple of another column in A
- B. The columns of A could be either linearly dependent or linearly independent depending on the case.
- C. The columns of A are linearly independent, as long as they does not include the zero vector.
- D. The columns of A must be linearly dependent.
- E. The columns of A must be linearly independent.
- F. none of the above

3. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.3.42.pg

Let A be a matrix with more columns than rows.
Select the best statement.

- A. The columns of A are linearly independent, as long as they does not include the zero vector.
- B. The columns of A could be either linearly dependent or linearly independent depending on the case.
- C. The columns of A must be linearly dependent.
- D. The columns of A are linearly independent, as long as no column is a scalar multiple of another column in A
- E. none of the above

4. (1 pt) local/Library/UI/MatrixAlgebra/Euclidean/2.3.43.pg

Let A be a matrix with linearly independent columns. Select the best statement.

- A. The equation $A \mathbf{x}=\mathbf{0}$ always has nontrivial solutions.
- B. There is insufficient information to determine if such an equation has nontrivial solutions.
- C. The equation $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions precisely when it has more rows than columns.
- D. The equation $A \mathbf{x}=\mathbf{0}$ never has nontrivial solutions.
- E. The equation $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions precisely when it has more columns than rows.
- F. The equation $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions precisely when it is a square matrix.
- G. none of the above

5. (1 pt) local/Library/UI/MatrixAlgebra/Euclidean/2.3.44.pg

Let A be a matrix with linearly independent columns.
Select the best statement.

- A. The equation $A \mathbf{x}=\mathbf{b}$ has a solution for all \mathbf{b} precisely when it has more columns than rows.
- B. The equation $A \mathbf{x}=\mathbf{b}$ always has a solution for all \mathbf{b}.
- C. The equation $A \mathbf{x}=\mathbf{b}$ has a solution for all \mathbf{b} precisely when it is a square matrix.
- D. The equation $A \mathbf{x}=\mathbf{b}$ never has a solution for all \mathbf{b}.
- E. There is insufficient information to determine if $A \mathbf{x}=$ b has a solution for all \mathbf{b}.
- F. The equation $A \mathbf{x}=\mathbf{b}$ has a solution for all \mathbf{b} precisely when it has more rows than columns.
- G. none of the above

6. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.3.46.pg

Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ be a linearly dependent set of vectors.
Select the best statement.

- A. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is a linearly independent set of vectors unless $\mathbf{u}_{4}=\mathbf{0}$.
- B. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- C. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is always a linearly independent set of vectors.
- D. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is a linearly independent set of vectors unless \mathbf{u}_{4} is a linear combination of other vectors in the set.
- E. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is always a linearly dependent set of vectors.
- F. none of the above

7. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.3.47.pg

Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ be a linearly independent set of vectors. Select the best statement.

- A. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is never a linearly independent set of vectors.
- B. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- C. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is always a linearly independent set of vectors.
- D. none of the above

8. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2.3.49.pg

Let \mathbf{u}_{4} be a linear combination of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$.
Select the best statement.

- A. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ could be a linearly dependent or linearly dependent set of vectors depending on the vectors chosen.
- B. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a linearly dependent set of vectors unless one of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is the zero vector.
- C. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is always a linearly independent set of vectors.
- D. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is never a linearly independent set of vectors.
- E. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is never a linearly dependent set of vectors.
- F. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ could be a linearly dependent or linearly dependent set of vectors depending on the vector space chosen.
- G. none of the above

9. ($1 \quad$ pt $)$ Library/Rochester/setLinearAlgebra9Dependence/ur_la_9_7.pg

The vectors
$v=\left[\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right], u=\left[\begin{array}{c}-4 \\ -12 \\ 31+k\end{array}\right]$, and $w=\left[\begin{array}{c}-3 \\ -7 \\ 16\end{array}\right]$.
are linearly independent if and only if $k \neq$ \qquad
10. (1 pt) Library/TCNJ/TCNJ_LinearIndependence/problem3.pg

If k is a real number, then the vectors $(1, k),(k, 3 k+40)$ are linearly independent precisely when $k \neq a, b$,
where $a=_, b=$ \qquad and $a<b$.
11. (1 pt) Library/Rochester/setLinearAlgebra4InverseMatrix/urla_4.2.pg
The matrix $\left[\begin{array}{cc}4 & -5 \\ -6 & k\end{array}\right]$ is invertible if and only if $k \neq-$.
12. (1 pt) Library/Rochester/setAlgebra34Matrices/scalarmult3.pg

If $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & -4 & -1 \\ 3 & -1 & -2\end{array}\right]$ and $B=\left[\begin{array}{ccc}4 & -3 & 3 \\ 1 & -2 & 2 \\ 1 & -1 & 2\end{array}\right]$, then
$2 A-3 B=\left[\begin{array}{lll}- & - & - \\ - & - & -\end{array}\right]$ and
$A^{T}=\left[\begin{array}{lll}- & - & - \\ - & - & -\end{array}\right]$.
13. ($\mathbf{1} \mathbf{~ p t)}$ Library/Rochester/setAlgebra34Matrices/cubing_2x2.pg Given the matrix $A=\left[\begin{array}{cc}4 & -3 \\ 0 & 3\end{array}\right]$, find A^{3}.
$A^{3}=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$.
14. (1 pt) Library/maCalcDB/setLinearAlgebra3Matrices/ur_la_3_6.pg

If A and B are 6×2 matrices, and C is a 4×6 matrix, which of the following are defined?

- A. $C+B$
- B. $C A$
- C. $B+A$
- D. B^{T}
- E. $B^{T} C^{T}$
- F. $A B$

15. (1 pt) Library/NAU/setLinearAlgebra/m1.pg

Find the inverse of $A B$ if

$$
\begin{aligned}
& A^{-1}=\left[\begin{array}{cc}
3 & -2 \\
3 & 5
\end{array}\right] \text { and } B^{-1}=\left[\begin{array}{ll}
2 & -3 \\
2 & -1
\end{array}\right] . \\
& (A B)^{-1}=\left[\begin{array}{ll}
- & -
\end{array}\right]
\end{aligned}
$$

16. (1 pt) Library/Rochester/setLinearAlgebra4InverseMatrix/ur_Ch2_1_4.pg
Are the following matrices invertible? Enter " Y " or " N ".
You must get all of the answers correct to receive credit.
_1. $\left[\begin{array}{cc}-5 & 0 \\ 0 & 5\end{array}\right]$
_2. $\left[\begin{array}{cc}25 & -8 \\ 0 & 0\end{array}\right]$
_3. $\left[\begin{array}{cc}-7 & 6 \\ -1 & -2\end{array}\right]$
_4. $\left[\begin{array}{cc}-5 & -8 \\ 25 & 40\end{array}\right]$
17. (1 pt) Library/ASU-topics/set119MatrixAlgebra/p13.pg Consider the following two systems.
(a)

$$
\left\{\begin{array}{ccc}
x-3 y & = & 2 \\
-3 x+3 y & = & -3
\end{array}\right.
$$

(b)

$$
\left\{\begin{array}{ccc}
x-3 y & = & 3 \\
-3 x+3 y & = & -3
\end{array}\right.
$$

(i) Find the inverse of the (common) coefficient matrix of the two systems.

$$
A^{-1}=\left[\begin{array}{ll}
\square & -
\end{array}\right]
$$

(ii) Find the solutions to the two systems by using the inverse, ie. by evaluating $A^{-1} B$ where B represents the right hand side (ie. $B=\left[\begin{array}{c}2 \\ -3\end{array}\right]$ for system (a) and $B=\left[\begin{array}{c}3 \\ -3\end{array}\right]$ for system (b)).

Solution to system (a): $x=$ \qquad , $y=$ \qquad
Solution to system (b): $x=$ \qquad , $y=$
18. (1 pt) Library/ASU-topics/set119MatrixAlgebra/p13.pg Consider the following two systems.
(a)

$$
\left\{\begin{array}{ccc}
-2 x+y & = & -3 \\
3 x-y & = & -3
\end{array}\right.
$$

(b)

$$
\left\{\begin{array}{ccc}
-2 x+y & =-2 \\
3 x-y & =-2
\end{array}\right.
$$

(i) Find the inverse of the (common) coefficient matrix of the two systems.

$$
A^{-1}=\left[\begin{array}{ll}
\square & -
\end{array}\right]
$$

(ii) Find the solutions to the two systems by using the inverse, ie. by evaluating $A^{-1} B$ where B represents the right hand side (i.e. $B=\left[\begin{array}{l}-3 \\ -3\end{array}\right]$ for system (a) and $B=\left[\begin{array}{l}-2 \\ -2\end{array}\right]$ for system (b)).

Solution to system (a): $x=$ \qquad , $y=$ \qquad
Solution to system (b): $x=$ \qquad , $y=$ \qquad
19. (1 pt) Library/TCNJ/TCNJ_MatrixInverse/problem1.pg If

$$
A=\left[\begin{array}{cc}
-3 & 4 \\
1 & 7
\end{array}\right]
$$

then
$A^{-1}=\left[\begin{array}{ll} & - \\ - & -\end{array}\right]$.
Given $\vec{b}=\left[\begin{array}{c}1 \\ -4\end{array}\right]$, solve $A \vec{x}=\vec{b}$.
$\vec{x}=[\square]$.
20. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-413.3.42.pg

A must be a square matrix to be invertible. ?
21. ($\mathbf{1} \mathrm{pt})$ Library/Rochester/setLinearAlgebra4InverseMatrix/urla_4_11.pg
If $A=\left[\begin{array}{cc}-2 e^{2 t} \sin (4 t) & -2 e^{5 t} \cos (4 t) \\ -6 e^{2 t} \cos (4 t) & 6 e^{5 t} \sin (4 t)\end{array}\right]$
then $A^{-1}=\left[\begin{array}{l}\square\end{array}\right]$.
22. (1 pt$)$ Library/maCalcDB/setLinearAlgebra4InverseMatrix/ur_la_4_8.pg

Determine which of the formulas hold for all invertible $n \times n$ matrices A and B

- A. $A B A^{-1}=B$
- B. $(A+B)(A-B)=A^{2}-B^{2}$
- C. $A^{7} B^{6}$ is invertible
- D. $A+B$ is invertible
- E. $\left(I_{n}-A\right)\left(I_{n}+A\right)=I_{n}-A^{2}$
- F. $\left(A+A^{-1}\right)^{9}=A^{9}+A^{-9}$

