
2. (1 pt) Library/NAU/setLinearAlgebra/HomLinEq.pg Solve the equation

$$
-2 x-4 y-5 z=0
$$

$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=s\left[\begin{array}{l}- \\ - \\ -\end{array}\right]+t\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$
3. (1 pt) local/Library/UI/LinearSystems/ur_la_1_19AxB.pg Solve the system

$$
\begin{gathered}
\left\{\begin{array}{r}
4 x_{1}-5 x_{2}+2 x_{3}+3 x_{4}=0 \\
-x_{1}+x_{2}+3 x_{3}+2 x_{4}=0 \\
3 x_{1}-4 x_{2}+5 x_{3}+5 x_{4}=0 \\
3 x_{1}-3 x_{2}-9 x_{3}-6 x_{4}=0
\end{array}\right. \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=+\left[\begin{array}{l}
- \\
- \\
- \\
- \\
-
\end{array}\right] t .}
\end{gathered}
$$

Solve the system

$$
\begin{gathered}
\left\{\begin{array}{r}
4 x_{1}-5 x_{2}+2 x_{3}+3 x_{4}= \\
-x_{1}+x_{2}+3 x_{3}+2 x_{4}= \\
3 \\
3 x_{1}-4 x_{2}+5 x_{3}+5 x_{4}= \\
3 x_{1}-3 x_{2}-9 x_{3}-6 x_{4}=-12
\end{array}\right. \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right]+\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right] t .}
\end{gathered}
$$

If the matrix A corresponds to the coefficient matrix for the above system of equations, then given any vector \vec{b}, the matrix equation $A \vec{x}=\vec{b}$ will always has an infinite number of solutions.

- A. True
- B. False

4. ($\mathbf{1} \mathrm{pt}$) local/Library/UI/LinearSystems/ur la_1 20vv3.pg Solve the system

Solve the system

$$
\left\{\begin{array}{rl}
x_{1}-5 x_{2}-2 x_{3}-2 x_{5}+5 x_{6} & =2 \\
-x_{4}-2 x_{5}-4 x_{6} & =-7 \\
x_{1}-5 x_{2} & +4 x_{5}+7 x_{6}
\end{array}=0\right.
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{l}
- \\
- \\
- \\
- \\
-
\end{array}\right]+\left[\begin{array}{l}
- \\
- \\
- \\
- \\
-
\end{array}\right] s+\left[\begin{array}{l}
- \\
- \\
- \\
- \\
- \\
-
\end{array}\right]} \\
& +\left[\begin{array}{l}
- \\
- \\
- \\
-
\end{array}\right] u .
\end{aligned}
$$

If the matrix A corresponds to the coefficient matrix for the above system of equations, then given any vector \vec{b}, the matrix equation $A \vec{x}=\vec{b}$ will always has an infinite number of solutions.

$$
\begin{aligned}
& \left\{\begin{array}{rl}
x_{1}-5 x_{2}-2 x_{3}-2 x_{5}+5 x_{6} & =0 \\
-x_{4}-2 x_{5}-4 x_{6} & =0 \\
x_{1}-5 x_{2} & +4 x_{5}+7 x_{6}
\end{array}=0\right. \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{l}
- \\
- \\
- \\
-
\end{array}\right] s+\left[\begin{array}{l}
- \\
- \\
- \\
- \\
-
\end{array}\right] t+\left[\begin{array}{l}
- \\
- \\
- \\
- \\
-
\end{array}\right]} \\
& u .
\end{aligned}
$$

- A. True
- B. False

5. (1 pt) UI/Fall14/in_span.pg

Let $A=\left[\begin{array}{c}-15 \\ -2 \\ 33\end{array}\right], B=\left[\begin{array}{c}3 \\ 2 \\ -5\end{array}\right]$, and $C=\left[\begin{array}{c}6 \\ 2 \\ -12\end{array}\right]$.
Which of the following best describes the span of the above 3 vectors?

- A. 0-dimensional point in R^{3}
- B. 1-dimensional line in R^{3}
- C. 2-dimensional plane in R^{3}
- D. R^{3}

Determine whether or not the three vectors listed above are linearly independent or linearly dependent.

- A. linearly dependent
- B. linearly independent

If they are linearly dependent, determine a non-trivial linear relation. Otherwise, if the vectors are linearly independent, enter 0 's for the coefficients, since that relationship always holds.
$\quad A+\quad B+\quad C=0$.

6. (1 pt) UI/Fall14/lin_span2.pg

Which of the following sets of vectors span R^{3} ?

- A. $\left[\begin{array}{l}-7 \\ -4 \\ -8\end{array}\right],\left[\begin{array}{l}6 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}-9 \\ 0 \\ -3\end{array}\right]$
- B. $\left[\begin{array}{l}3 \\ 1 \\ 6\end{array}\right],\left[\begin{array}{c}-1 \\ -9 \\ 5\end{array}\right]$
- C. $\left[\begin{array}{c}8 \\ -7\end{array}\right],\left[\begin{array}{l}-4 \\ -2\end{array}\right],\left[\begin{array}{l}5 \\ 6\end{array}\right]$
- D. $\left[\begin{array}{l}7 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{c}-8 \\ 9 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ -6 \\ 0\end{array}\right]$
- E. $\left[\begin{array}{c}-5 \\ -6\end{array}\right],\left[\begin{array}{c}-5 \\ -6\end{array}\right]$
- F. $\left[\begin{array}{c}4 \\ -5 \\ 8\end{array}\right],\left[\begin{array}{c}-7 \\ -4 \\ -2\end{array}\right],\left[\begin{array}{l}11 \\ -1 \\ 10\end{array}\right]$

Which of the following sets of vectors are linearly independent?

- A. $\left[\begin{array}{l}-7 \\ -4 \\ -8\end{array}\right],\left[\begin{array}{l}6 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}-9 \\ 0 \\ -3\end{array}\right]$
- B.
- C.

