1. (1 pt) Library/Rochester/setLinearAlgebra18OrthogonalBases/ur_la_18_11.pg
Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & -3 & 1 \\ -1 & -6 & 2\end{array}\right]$.
Find an orthonormal basis of the column space of A.
$\left[\begin{array}{l}- \\ -\end{array}\right],\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$.
2. (1 pt) Library/Rochester/setLinearAlgebra18OrthogonalBases/ur_la_18_7.pg
Let $A=\left[\begin{array}{cccc}4 & 1 & 12 & -3 \\ -1 & -1 & -3 & 3\end{array}\right]$.
Find an orthonormal basis of the kernel of A.
$\left[\begin{array}{l}- \\ - \\ -\end{array}\right],\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$.
3. ($1 \mathbf{~ p t) ~ L i b r a r y / R o c h e s t e r / s e t L i n e a r A l g e b r a 2 2 S y m m e t r i c M a t r i c e s - ~}$ /ur_la_22_6.pg
The matrix $M=\left[\begin{array}{cccc}1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1\end{array}\right]$.
has two distinct eigenvalues $\lambda_{1}<\lambda_{2}$. Find the eigenvalues and an orthonormal basis for each eigenspace.
$\lambda_{1}=$ \qquad
[^0]associated unit eigenvector $=\left[\begin{array}{l}- \\ - \\ -\end{array}\right],\left[\begin{array}{l}- \\ - \\ - \\ -\end{array}\right]$,
$\lambda_{2}=\longrightarrow$,
associated unit eigenvector $=\left[\begin{array}{l}- \\ - \\ -\end{array}\right],\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$.
The above eigenvectors form an orthonormal eigenbasis for M.
4. (1 pt) Library/Rochester/setLinearAlgebra19QRfactorization-/urla_19-4.pg
Find the $Q R$ factorization of $M=\left[\begin{array}{cc}9 & 15 \\ 9 & 9 \\ 9 & 15 \\ -9 & -9\end{array}\right]$.
$M=\left[\begin{array}{ll}\square & \square \\ \square & \square \\ - & \square\end{array}\right]\left[\begin{array}{ll}\square & - \\ \square & -\end{array}\right]$.
5. (1 pt) Library/Rochester/setLinearAlgebra19QRfactorization/ur」a_19.3.pg
Find the $Q R$ factorization of $M=\left[\begin{array}{ccc}6 & 4 & 1 \\ 6 & 1 & -11 \\ 3 & -1 & 2\end{array}\right]$.
$M=\left[\begin{array}{lll}\square & - & \square \\ - & \square & \square\end{array}\right]\left[\begin{array}{lll}\square \\ \square & - & \square \\ \square & - & \square\end{array}\right]$.

[^0]: Generated by ©CWeBWorK, http://webwork.maa.org, Mathematical Association of America

