$1. \hspace{1.5cm} (1 \hspace{1.5cm} pt) \hspace{1.5cm} Library/Rochester/setLinearAlgebra 17 Dot Product Rn-/ur_la_17_6.pg \\$

Find a vector v perpendicular to the vector $u = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

$$v = \begin{bmatrix} - \\ - \end{bmatrix}$$
.

2. (1 pt) Library/Rochester/setLinearAlgebra17DotProductRn-/ur_la_17_7.pg

Find the value of k for which the vectors

That the value of
$$k$$
 for which the vectors
$$x = \begin{bmatrix} -5 \\ -1 \\ -1 \\ 2 \end{bmatrix} \text{ and } y = \begin{bmatrix} 4 \\ 2 \\ -5 \\ k \end{bmatrix} \text{ are orthogonal.}$$

3. (1 pt) Library/TCNJ/TCNJ_OrthogonalSets/problem9.pg

Given $v = \begin{bmatrix} -9 \\ -5 \end{bmatrix}$, find the coordinates for v in the subspace W spanned by $u_1 = \begin{bmatrix} 6 \\ -1 \end{bmatrix}$ and $u_2 = \begin{bmatrix} -6 \\ -36 \end{bmatrix}$. Note that u_1 and u_2 are orthogonal.

$$v = \underline{\hspace{1cm}} u_1 + \underline{\hspace{1cm}} u_2$$

$\begin{tabular}{lll} \hline \bf 4. & (1 & pt) & Library/Rochester/setLinearAlgebra14TransfOfRn-/ur_la_14_18.pg \\ \hline \end{tabular}$

Let L be the line in \mathbb{R}^3 that consists of all scalar multiples of the vector $\begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$. Find the orthogonal projection of the vector $\begin{bmatrix} 9 \end{bmatrix}$

$$v = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$$
 onto L .

$$\operatorname{proj}_{L} v = \begin{bmatrix} - - \\ - - \end{bmatrix}.$$

5. (1 pt) Library/Rochester/setLinearAlgebra18OrthogonalBases-/ur_la_18_4.pg

Let
$$x = \begin{bmatrix} 8 \\ 6 \\ 8 \\ 0 \end{bmatrix}$$
 and $y = \begin{bmatrix} 4 \\ -6 \\ -20 \\ 9 \end{bmatrix}$.

 $Generated\ by\ \textcircled{\textcircled{C}WeBWorK}, http://webwork.maa.org, Mathematical\ Association\ of\ America$

Use the Gram-Schmidt process to determine an orthonormal basis for the subspace of \mathbb{R}^4 spanned by x and y.

$\textbf{6.} \hspace{0.5in} (1 \hspace{0.5em} pt) \hspace{0.5em} Library/Rochester/setLinearAlgebra17DotProductRn-/ur_la_17_21.pg \\$

Let
$$v_1 = \begin{bmatrix} -0.5 \\ -0.5 \\ 0.5 \\ 0.5 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 0.5 \\ -0.5 \\ 0.5 \\ -0.5 \end{bmatrix}$, and $v_3 = \begin{bmatrix} 0.5 \\ -0.5 \\ -0.5 \\ 0.5 \end{bmatrix}$.

Find a vector v_4 in \mathbb{R}^4 such that the vectors v_1 , v_2 , v_3 , and v_4 are orthonormal.

$$v_4 = \begin{bmatrix} - \\ - \\ - \\ - \end{bmatrix}.$$

$7. \hspace{1.5cm} (1 \hspace{1em} pt) \hspace{1em} Library/Rochester/setLinearAlgebra 12 Diagonalization-/ur_la_12_2.pg \\$

Let
$$M = \begin{bmatrix} 10 & -10 \\ 5 & -5 \end{bmatrix}$$

Find formulas for the entries of M^n , where n is a positive integer.

$$M^n = \left[\begin{array}{ccc} & & & & \\ & & & & \end{array} \right].$$

$\textbf{8.} \quad \textbf{(1 pt) Library/Rochester/setLinearAlgebra 22 Symmetric Matrices-/ur_la_22_3.pg}$

Find the eigenvalues and associated unit eigenvectors of the (symmetric) matrix

$$A = \left[\begin{array}{cc} -3 & -6 \\ -6 & -12 \end{array} \right].$$

1

smaller eigenvalue = _____,

associated unit eigenvector = $\begin{bmatrix} - \\ - \end{bmatrix}$,

larger eigenvalue = _____, associated unit eigenvector = _____ .

The above eigenvectors form an orthonormal eigenbasis for A.