1. (1 pt) Library/Rochester/setLinearAlgebra17DotProductRn/ur_la_17_6.pg
Find a vector v perpendicular to the vector $u=\left[\begin{array}{c}2 \\ -1\end{array}\right]$.
$v=\left[\begin{array}{ll}- \\ -\end{array}\right]$.
2. (1 pt) Library/Rochester/setLinearAlgebra17DotProductRn/ur_la_17_7.pg
Find the value of k for which the vectors
$x=\left[\begin{array}{c}-5 \\ -1 \\ -1 \\ 2\end{array}\right]$ and $y=\left[\begin{array}{c}4 \\ 2 \\ -5 \\ k\end{array}\right]$ are orthogonal.
$k=$
3. (1 pt) Library/TCNJ/TCNJ_OrthogonalSets/problem9.pg

Given $v=\left[\begin{array}{l}-9 \\ -5\end{array}\right]$, find the coordinates for v in the subspace W spanned by $u_{1}=\left[\begin{array}{c}6 \\ -1\end{array}\right]$ and $u_{2}=\left[\begin{array}{c}-6 \\ -36\end{array}\right]$. Note that u_{1} and u_{2} are orthogonal.
$v=\quad u_{1}+\ldots u_{2}$
4. (1 pt) Library/Rochester/setLinearAlgebra14TransfOfRn/ur_la_14_18.pg
Let L be the line in \mathbb{R}^{3} that consists of all scalar multiples of the vector $\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right]$. Find the orthogonal projection of the vector $v=\left[\begin{array}{l}9 \\ 8 \\ 6\end{array}\right]$ onto L.
$\operatorname{proj}_{L} v=\left[\begin{array}{l}\square \\ \square\end{array}\right.$.
5. (1 pt) Library/Rochester/setLinearAlgebra18OrthogonalBases/ur_la_18_4.pg
Let $x=\left[\begin{array}{l}8 \\ 6 \\ 8 \\ 0\end{array}\right]$ and $y=\left[\begin{array}{c}4 \\ -6 \\ -20 \\ 9\end{array}\right]$.

Use the Gram-Schmidt process to determine an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by x and y.

$$
\left[\begin{array}{l}
\bar{\square} \\
\bar{Z}
\end{array}\right],\left[\begin{array}{l}
\bar{Z} \\
\bar{Z}
\end{array}\right]
$$

6. ($\mathbf{1} \mathrm{pt})$ Library/Rochester/setLinearAlgebra17DotProductRn/urla_17_21.pg
Let $v_{1}=\left[\begin{array}{c}-0.5 \\ -0.5 \\ 0.5 \\ 0.5\end{array}\right], v_{2}=\left[\begin{array}{c}0.5 \\ -0.5 \\ 0.5 \\ -0.5\end{array}\right]$, and $v_{3}=\left[\begin{array}{c}0.5 \\ -0.5 \\ -0.5 \\ 0.5\end{array}\right]$.
Find a vector v_{4} in \mathbb{R}^{4} such that the vectors v_{1}, v_{2}, v_{3}, and v_{4} are orthonormal.
$v_{4}=\left[\begin{array}{l}- \\ - \\ -\end{array}\right]$.
7. (1 pt$)$ Library/Rochester/setLinearAlgebra12Diagonalization/ur_la_12_2.pg
Let $M=\left[\begin{array}{cc}10 & -10 \\ 5 & -5\end{array}\right]$.
Find formulas for the entries of M^{n}, where n is a positive integer.
$M^{n}=\left[\begin{array}{ll}\square & \square\end{array}\right]$.
8. (1 pt) Library/Rochester/setLinearAlgebra22SymmetricMatrices/ur_la_22.3.pg
Find the eigenvalues and associated unit eigenvectors of the (symmetric) matrix
$A=\left[\begin{array}{cc}-3 & -6 \\ -6 & -12\end{array}\right]$.
smaller eigenvalue $=$ \qquad
associated unit eigenvector $=\left[\begin{array}{ll}- &] \\ -\end{array}\right]$
larger eigenvalue $=$ \qquad
associated unit eigenvector $=\left[\begin{array}{l}- \\ -\end{array}\right]$.
The above eigenvectors form an orthonormal eigenbasis for A.
