[18] 1.) Find the characteristic equation and diagonalize $A=\left[\begin{array}{cc}-2 & 6 \\ 6 & -18\end{array}\right]$
NOTE: A is clearly not invertible (since $\operatorname{det}(A)=0$ or equivalently columns are linearly dependent or equivalently (since A square) rows or linearly dependent). Thus 0 is an eigenvalue of A.

Find eigenvalues:
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}-2-\lambda & 6 \\ 6 & -18-\lambda\end{array}\right|=(-2-\lambda)(-18-\lambda)-36=36+20 \lambda+\lambda^{2}-36=\lambda^{2}+20 \lambda=\lambda(\lambda+20)=0$
Characteristic equation of $A=\underline{\lambda(\lambda+20)=0}$.
Find eigenvectors:
$\lambda=0:\left[\begin{array}{cc}-2 & 6 \\ 6 & -18\end{array}\right] \sim\left[\begin{array}{cc}1 & -3 \\ 0 & 0\end{array}\right]$ implies $\left[\begin{array}{c}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}3 x_{2} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}3 \\ 1\end{array}\right] x_{2}$
Check: $\left[\begin{array}{cc}-2 & 6 \\ 6 & -18\end{array}\right]\left[\begin{array}{l}3 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]=0\left[\begin{array}{l}3 \\ 1\end{array}\right]$
$\lambda=-20:\left[\begin{array}{cc}18 & 6 \\ 6 & 2\end{array}\right] \sim\left[\begin{array}{ll}1 & \frac{1}{3} \\ 0 & 0\end{array}\right]$ implies $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-\frac{1}{3} x_{2} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-\frac{1}{3} \\ 1\end{array}\right] x_{2}$.
Thus $\left[\begin{array}{c}-\frac{1}{3} \\ 1\end{array}\right]$ is an e. vector of A. Hence $\left[\begin{array}{c}-1 \\ 3\end{array}\right]$ is also an e-vector of A.

$$
\text { Check: }\left[\begin{array}{cc}
-2 & 6 \\
6 & -18
\end{array}\right]\left[\begin{array}{c}
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
20 \\
-60
\end{array}\right]=-20\left[\begin{array}{c}
-1 \\
3
\end{array}\right]
$$

$\operatorname{det} P=9+1=10$

$$
P=\underline{\left[\begin{array}{cc}
3 & -1 \\
1 & 3
\end{array}\right]} \quad D=\underline{\left[\begin{array}{cc}
0 & 0 \\
0 & -20
\end{array}\right]} \quad P^{-1}=\underline{\left[\begin{array}{cc}
\frac{3}{10} & \frac{1}{10} \\
-\frac{1}{10} & \frac{3}{10}
\end{array}\right] . . ~}
$$

Note: if you forgot the formula for P^{-1}, you could (either derive it or) notice that A is symmetric and P is orthogonal. Thus we can normalize the columns of P so that for the new orthonormal $P, P^{-1}=P^{T}$ (since columns of new P are orthonormal). Thus alternative answer:
$P=\underline{\left[\begin{array}{cc}\frac{3}{\sqrt{10}} & \frac{-1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}}\end{array}\right]} \quad D=\underline{\left[\begin{array}{cc}0 & 0 \\ 0 & -20\end{array}\right]} \quad P^{-1}=\left[\begin{array}{cc}\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \\ -\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}}\end{array}\right]$.
[16] 2.) Use Gram-Schmidt to find the $Q R$ factorization of $M=\left[\begin{array}{ll}6 & 3 \\ 6 & 0 \\ 3 & 3\end{array}\right]$.
Note one can work with scaled vectors to find Q (think of the pictures relating to orthogonal projection and orthogonal component), but not R. For those not comfortable with scaling, we will work with the vectors as given.
$\left[\begin{array}{l}6 \\ 6 \\ 3\end{array}\right] \cdot\left[\begin{array}{l}6 \\ 6 \\ 3\end{array}\right]=36+36+9=81 \quad\left[\begin{array}{l}6 \\ 6 \\ 3\end{array}\right] \cdot\left[\begin{array}{l}3 \\ 0 \\ 3\end{array}\right]=18+0+9=27$
$\operatorname{proj}^{[}\left[\begin{array}{l}6 \\ 6 \\ 3\end{array}\right]\left[\begin{array}{l}3 \\ 0 \\ 3\end{array}\right]=\frac{27}{81}\left[\begin{array}{l}6 \\ 6 \\ 3\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}6 \\ 6 \\ 3\end{array}\right]=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$
Orthogonal component $=\left[\begin{array}{l}3 \\ 0 \\ 3\end{array}\right]-\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{r}1 \\ -2 \\ 2\end{array}\right]$
Normalize: length of $\left[\begin{array}{l}6 \\ 6 \\ 3\end{array}\right]=\sqrt{81}=9$
length of $\left[\begin{array}{r}1 \\ -2 \\ 2\end{array}\right]=\sqrt{1+4+4}=3$
Thus $Q=\left[\begin{array}{cc}\frac{6}{9} & \frac{1}{3} \\ \frac{6}{9} & -\frac{2}{3} \\ \frac{3}{9} & \frac{2}{3}\end{array}\right]=\left[\begin{array}{cc}\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{2}{3}\end{array}\right]$.
$M=Q R$ implies $Q^{T} M=Q^{T} Q R=R$
Thus $R=Q^{T} M=\left[\begin{array}{rrr}\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3}\end{array}\right]\left[\begin{array}{ll}6 & 3 \\ 6 & 0 \\ 3 & 3\end{array}\right]=\left[\begin{array}{ll}4+4+1 & 2+0+1 \\ 2-4+2 & 1-0+2\end{array}\right]=\left[\begin{array}{ll}9 & 3 \\ 0 & 3\end{array}\right]$
NOTE: Columns of Q are orthonormal and R is upper triangular.
$Q=\left[\begin{array}{cc}\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{2}{3} \\ 1 & 2\end{array}\right] \quad R=\underline{\left[\begin{array}{ll}9 & 3 \\ 0 & 3\end{array}\right]}$

Part 2: Multiple Choice (multiple choice problems are worth 6 points each).

Problem 1. The eigenspace corresponding to a particular eigenvalue of A contains an infinite number of vectors.

- A. True
- B. False

Problem 2. Let $A=\left[\begin{array}{ccc}-1 & -7 & -6 \\ 0 & 7 & -8 \\ 0 & 0 & -1\end{array}\right]$. Is $A=$ diagonalizable?

- A. yes
- B. no
- C. none of the above

Problem 3. Suppose $A\left[\begin{array}{c}4 \\ -2 \\ -1\end{array}\right]=\left[\begin{array}{c}-16 \\ 8 \\ 4\end{array}\right]$. Then an eigenvalue of A is

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Problem 4. 0 is an eigenvalue of A if and only if $\operatorname{det}(A)=0$

- A. True
- B. False

Problem 5. If the characteristic polynomial of $A=(\lambda+1)^{9}(\lambda-5)^{2}(\lambda+2)^{3}$, then the algebraic multiplicity of $\lambda=5$ is

- A. 0
- B. 1
-C. 2
- D. 3
- E. 0 or 1
-F. 0 or 2
- G. 1 or 2
- H. 0,1 , or 2
- I. $0,1,2$, or 3
- J. none of the above

Problem 6. Suppose $A=P D P^{-1}$ where D is a diagonal matrix. Suppose also the $d_{i i}$ are the diagonal entries of D. If $P=\left[\overrightarrow{p_{1}} \overrightarrow{p_{2}} \overrightarrow{p_{3}}\right]$ and $d_{11}=d_{22}$, then $4 \overrightarrow{p_{1}}+3 \overrightarrow{p_{2}}$ is an eigenvector of A

- A. True
- B. False

Problem 7. Let $A=\left[\begin{array}{ccc}3 & -1 & -6 \\ 0 & 5 & 12 \\ 0 & 0 & 3\end{array}\right]$. Is $A=$ diagonalizable?

- A. yes
- B. no
- C. none of the above

Problem 8.

If the characteristic polynomial of $A=(\lambda-8)^{3}(\lambda+8)(\lambda+1)^{3}$, then the geometric multiplicity of $\lambda=-8$ is

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Problem 9. If x is not in a subspace W, then $x-\operatorname{proj}_{W}(x)$ is not zero.

- A. True
- B. False

Problem 10. If A is symmetric, then A is diagonalizable.

- A. True
- B. False

Problem 11. Suppose the orthogonal projection of $\left[\begin{array}{c}-147 \\ 3 \\ 9\end{array}\right]$ onto $\left[\begin{array}{c}1 \\ -5 \\ 4\end{array}\right]$ is $\left(z_{1}, z_{2}, z_{3}\right)$. Then $z_{1}=$

- A. -4
- B. -3
-C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

