Dec. 4, 2014
[18] 1.) Find the characteristic equation and diagonalize $A=\left[\begin{array}{cc}4 & 8 \\ 8 & 16\end{array}\right]$
NOTE: A is clearly not invertible (since $\operatorname{det}(A)=0$ or equivalently columns are linearly dependent or equivalently (since A square) rows or linearly dependent). Thus 0 is an eigenvalue of A.

Find eigenvalues:
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}4-\lambda & 8 \\ 8 & 16-\lambda\end{array}\right|=(4-\lambda)(16-\lambda)-64=64-20 \lambda+\lambda^{2}-64=\lambda^{2}-20 \lambda=\lambda(\lambda-20)=0$
Characteristic equation of $A=\underline{\lambda}(\lambda-20)=0$.
Find eigenvectors:
$\lambda=0:\left[\begin{array}{cc}4 & 8 \\ 8 & 16\end{array}\right] \sim\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$ implies $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-2 x_{2} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-2 \\ 1\end{array}\right] x_{2}$
Check: $\left[\begin{array}{cc}4 & 8 \\ 8 & 16\end{array}\right]\left[\begin{array}{c}-2 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]=0\left[\begin{array}{c}-2 \\ 1\end{array}\right]$
$\lambda=-20:\left[\begin{array}{cc}-16 & 8 \\ 8 & -4\end{array}\right] \sim\left[\begin{array}{cc}1 & -\frac{1}{2} \\ 0 & 0\end{array}\right]$ implies $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}\frac{1}{2} x_{2} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}\frac{1}{2} \\ 1\end{array}\right] x_{2}$.
Thus $\left[\begin{array}{l}\frac{1}{2} \\ 1\end{array}\right]$ is an e. vector of A. Hence $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is also an e-vector of A.

$$
\text { Check: }\left[\begin{array}{cc}
4 & 8 \\
8 & 16
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
20 \\
40
\end{array}\right]=20\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

$\operatorname{det} P=-4-1=-5$

$$
P=\underline{\left[\begin{array}{cc}
-2 & 1 \\
1 & 2
\end{array}\right]} \quad D=\underline{\left[\begin{array}{cc}
0 & 0 \\
0 & 20
\end{array}\right]} \quad P^{-1}=\left[\begin{array}{cc}
-\frac{2}{5} & \frac{1}{5} \\
\frac{1}{5} & \frac{2}{5}
\end{array}\right] .
$$

Note: if you forgot the formula for P^{-1}, you could (either derive it or) notice that A is symmetric and P is orthogonal. Thus we can normalize the columns of P so that for the new orthonormal $P, P^{-1}=P^{T}$ (since columns of new P are orthonormal). Thus alternative answer:
$P=\underline{\left[\begin{array}{cc}-\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}\end{array}\right]} \quad D=\underline{\left[\begin{array}{cc}0 & 0 \\ 0 & 20\end{array}\right]} \quad P^{-1}=\underline{\left[\begin{array}{cc}-\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}\end{array}\right] .}$
[16] 2.) Use Gram-Schmidt to find the $Q R$ factorization of $M=\left[\begin{array}{ll}1 & 6 \\ 2 & 6 \\ 2 & 0\end{array}\right]$.
Note one can work with scaled vectors to find Q (think of the pictures relating to orthogonal projection and orthogonal component), but not R. For those not comfortable with scaling, we will work with the vectors as given.
$\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]=1+4+4=9 \quad\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right] \cdot\left[\begin{array}{l}6 \\ 6 \\ 0\end{array}\right]=6+12+0=18$
$\operatorname{proj}^{[}\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]\left[\begin{array}{l}6 \\ 6 \\ 0\end{array}\right]=\frac{18}{9}\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]=2\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]=\left[\begin{array}{l}2 \\ 4 \\ 4\end{array}\right]$
Orthogonal component $=\left[\begin{array}{l}6 \\ 6 \\ 0\end{array}\right]-\left[\begin{array}{l}2 \\ 4 \\ 4\end{array}\right]=\left[\begin{array}{r}4 \\ 2 \\ -4\end{array}\right]$
Normalize: length of $\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]=\sqrt{9}=3 \quad$ length of $\left[\begin{array}{r}4 \\ 2 \\ -4\end{array}\right]=\sqrt{16+4+16}=6$
Thus $Q=\left[\begin{array}{cc}\frac{1}{3} & \frac{4}{6} \\ \frac{2}{3} & \frac{2}{6} \\ \frac{2}{3} & -\frac{4}{6}\end{array}\right]=\left[\begin{array}{cc}\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{2}{3}\end{array}\right]$.
$M=Q R$ implies $Q^{T} M=Q^{T} Q R=R$
Thus $R=Q^{T} M=\left[\begin{array}{ccc}\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3}\end{array}\right]\left[\begin{array}{ll}1 & 6 \\ 2 & 6 \\ 2 & 0\end{array}\right]=\left[\begin{array}{ll}\frac{1+4+4}{3} & 2+4+0 \\ \frac{2-2-0}{3} & 4+2+0\end{array}\right]=\left[\begin{array}{ll}3 & 6 \\ 0 & 6\end{array}\right]$
NOTE: Columns of Q are orthonormal and R is upper triangular.
$Q=\left[\begin{array}{cc}\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \\ 2 & \end{array}\right] \quad R=\underline{\left[\begin{array}{ll}3 & 6 \\ 0 & 6\end{array}\right]}$

Part 2: Multiple Choice (multiple choice problems are worth 6 points each).

Problem 1. There are an infinite number of eigenvectors that correspond to a particular eigenvalue of A

- A. True
- B. False

Problem 2. The vector $\mathbf{0}$ is an eigenvector of A if and only if $\operatorname{det}(A)=0$.

- A. True
- B. False

Problem 3. If the characteristic polynomial of $A=(\lambda-7)^{1}(\lambda+7)^{2}(\lambda+8)^{6}$, then the algebraic multiplicity of $\lambda=-7$ is

- A. 0
- B. 1
-C. 2
- D. 3
- E. 0 or 1
- F. 0 or 2
- G. 1 or 2
- H. 0,1 , or 2
- I. $0,1,2$, or 3
- J. none of the above

Problem 4. Let $A=\left[\begin{array}{ccc}4 & 5 & 10 \\ 0 & 2 & 2 \\ 0 & 0 & 4\end{array}\right]$. Is $A=$ diagonalizable?

- A. yes
- B. no
- C. none of the above

Problem 5. If A is diagonalizable, then A is symmetric.

- A. True
- B. False

Problem 6. Suppose $A=P D P^{-1}$ where D is a diagonal matrix. Suppose also the $d_{i i}$ are the diagonal entries of D. If $P=\left[\begin{array}{lll}\overrightarrow{p_{1}} & \overrightarrow{p_{2}} & \overrightarrow{p_{3}}\end{array}\right]$ and $d_{11}=d_{22}$, then $2 \overrightarrow{p_{1}}+5 \overrightarrow{p_{2}}$ is an eigenvector of A

- A. True
- B. False

Problem 7. If the characteristic polynomial of $A=(\lambda-7)^{9}(\lambda-3)^{2}(\lambda+2)^{4}$, then the geometric multiplicity of $\lambda=3$ is

- A. 0
- B. 1
-C. 2
- D. 3
- E. 0 or 1
-F. 0 or 2
- G. 1 or 2
- H. 0,1 , or 2
- I. $0,1,2$, or 3
- J. none of the above

Problem 8. If x is in a subspace W, then $x-\operatorname{proj}_{W}(x)$ is not zero.

- A. True
- B. False

Problem 9. Let $A=\left[\begin{array}{ccc}-4 & 5 & 10 \\ 0 & -3 & 2 \\ 0 & 0 & -4\end{array}\right]$. Is $A=$ diagonalizable?

- A. yes
- B. no
- C. none of the above

Problem 10. Suppose $A\left[\begin{array}{l}5 \\ 4 \\ 1\end{array}\right]=\left[\begin{array}{l}-5 \\ -4 \\ -1\end{array}\right]$. Then an eigenvalue of A is

- A. -4
- B. -3
-C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Problem 11. Suppose the orthogonal projection of $\left[\begin{array}{c}13 \\ 3 \\ -4\end{array}\right]$ onto $\left[\begin{array}{c}1 \\ -1 \\ -3\end{array}\right]$ is $\left(z_{1}, z_{2}, z_{3}\right)$. Then $z_{1}=$

- A. -4
- B. -3
-C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

