Dec. 4, 2014
[18] 1.) Find the characteristic equation and diagonalize $A=\left[\begin{array}{cc}20 & 10 \\ 10 & 5\end{array}\right]$
NOTE: A is clearly not invertible (since $\operatorname{det}(A)=0$ or equivalently columns are linearly dependent or equivalently (since A square) rows or linearly dependent). Thus 0 is an eigenvalue of A.

Find eigenvalues:
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}20-\lambda & 10 \\ 10 & 5-\lambda\end{array}\right|=(20-\lambda)(5-\lambda)-100=100-25 \lambda+\lambda^{2}-100=\lambda^{2}-25 \lambda=\lambda(\lambda-25)=0$
Characteristic equation of $A=\underline{\lambda}(\lambda-25)=0$.
Find eigenvectors:
$\lambda=0:\left[\begin{array}{cc}20 & 10 \\ 10 & 5\end{array}\right] \sim\left[\begin{array}{cc}1 & \frac{1}{2} \\ 0 & 0\end{array}\right]$ implies $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-\frac{1}{2} x_{2} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right] x_{2}$
Thus $\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$ is an e. vector of A. Hence $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ is also an e-vector of A.
Check: $\left[\begin{array}{cc}20 & 10 \\ 10 & 5\end{array}\right]\left[\begin{array}{c}-1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]=0\left[\begin{array}{c}-1 \\ 2\end{array}\right]$
$\lambda=25:\left[\begin{array}{cc}-5 & 10 \\ 10 & -20\end{array}\right] \sim\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$ implies $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}2 x_{2} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right] x_{2}$.
Check: $\left[\begin{array}{cc}20 & 10 \\ 10 & 5\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}50 \\ 25\end{array}\right]=25\left[\begin{array}{l}2 \\ 1\end{array}\right]$
$\operatorname{det} P=-1-4=-5$

$$
P=\underline{\left[\begin{array}{cc}
-1 & 2 \\
2 & 1
\end{array}\right]} \quad D=\underline{\left[\begin{array}{cc}
0 & 0 \\
0 & 25
\end{array}\right]} \quad P^{-1}=\left[\begin{array}{cc}
-\frac{1}{5} & \frac{2}{5} \\
\frac{2}{5} & \frac{1}{5}
\end{array}\right] .
$$

Note: if you forgot the formula for P^{-1}, you could (either derive it or) notice that A is symmetric and P is orthogonal. Thus we can normalize the columns of P so that for the new orthonormal $P, P^{-1}=P^{T}$ (since columns of new P are orthonormal). Thus alternative answer:
$P=\underline{\left[\begin{array}{cc}\frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\end{array}\right]} \quad D=\underline{\left[\begin{array}{cc}0 & 0 \\ 0 & 25\end{array}\right]} \quad P^{-1}=\underline{\left[\begin{array}{cc}\frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\end{array}\right] .}$
[16] 2.) Use Gram-Schmidt to find the $Q R$ factorization of $M=\left[\begin{array}{ll}2 & 0 \\ 1 & 9 \\ 2 & 9\end{array}\right]$.
Note one can work with scaled vectors to find Q (think of the pictures relating to orthogonal projection and orthogonal component), but not R. For those not comfortable with scaling, we will work with the vectors as given.
$\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right] \cdot\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]=4+1+4=9 \quad\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right] \cdot\left[\begin{array}{l}0 \\ 9 \\ 9\end{array}\right]=0+9+18=27$
$\operatorname{proj}^{[}\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]\left[\begin{array}{l}0 \\ 9 \\ 9\end{array}\right]=\frac{27}{9}\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right] 3\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}6 \\ 3 \\ 6\end{array}\right]$
Orthogonal component $=\left[\begin{array}{l}0 \\ 9 \\ 9\end{array}\right]-\left[\begin{array}{l}6 \\ 3 \\ 6\end{array}\right]=\left[\begin{array}{r}-6 \\ 6 \\ 3\end{array}\right]$
Normalize: length of $\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]=\sqrt{9}=3$
length of $\left[\begin{array}{r}-6 \\ 6 \\ 3\end{array}\right]=\sqrt{36+36+9}=9$
Thus $Q=\left[\begin{array}{rr}\frac{2}{3} & -\frac{6}{9} \\ \frac{1}{3} & \frac{6}{9} \\ \frac{2}{3} & \frac{3}{9}\end{array}\right]=\left[\begin{array}{cc}\frac{2}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3}\end{array}\right]$.
$M=Q R$ implies $Q^{T} M=Q^{T} Q R=R$
Thus $R=Q^{T} M=\left[\begin{array}{rrr}\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & \frac{1}{3}\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 1 & 9 \\ 2 & 9\end{array}\right]=\left[\begin{array}{rl}\frac{4+1+4}{3+2} & 0+3+6 \\ \frac{-4+2}{3} & 0+6+3\end{array}\right]=\left[\begin{array}{ll}3 & 9 \\ 0 & 9\end{array}\right]$
NOTE: Columns of Q are orthonormal and R is upper triangular.
$Q=\left[\begin{array}{cc}\frac{2}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{2}{3}\end{array}\right] \quad R=\left[\begin{array}{ll}3 & 9 \\ 0 & 9\end{array}\right]$

Part 2: Multiple Choice (multiple choice problems are worh 6 points each).

Problem 1.

If the characteristic polynomial of $A=(\lambda-4)^{8}(\lambda+4)^{2}(\lambda+7)^{6}$, then the geometric multiplicity of $\lambda=-4$ is

- A. 0
- B. 1
- C. 2
- D. 3
- E. 0 or 1
- F. 0 or 2
- G. 1 or 2
- H. 0,1 , or 2
- I. $0,1,2$, or 3
- J. none of the above

Problem 2. 0 is an eigenvalue of A if and only if the columns of A are linearly dependent.

- A. True
- B. False

Problem 3. Let $A=\left[\begin{array}{ccc}7 & -1 & 3 \\ 0 & 9 & -6 \\ 0 & 0 & 7\end{array}\right]$. Is $A=$ diagonalizable?

- A. yes
- B. no
- C. none of the above

Problem 4. Suppose $A=P D P^{-1}$ where D is a diagonal matrix. Suppose also the $d_{i i}$ are the diagonal entries of D. If $P=\left[\overrightarrow{p_{1}} \overrightarrow{p_{2}} \overrightarrow{p_{3}}\right]$ and $d_{11}=d_{22}$, then $3 \overrightarrow{p_{1}}+4 \overrightarrow{p_{2}}$ is an eigenvector of A

- A. True
- B. False

Problem 5. If x is in a subspace W, then $x-\operatorname{proj}_{W}(x)=0$.

- A. True
- B. False

Problem 6. If A is symmetric, then A is diagonalizable.

- A. True
- B. False

Problem 7. Suppose $A\left[\begin{array}{c}3 \\ -5 \\ 3\end{array}\right]=\left[\begin{array}{c}-12 \\ 20 \\ -12\end{array}\right]$. Then an eigenvalue of A is

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Problem 8. Let $A=\left[\begin{array}{ccc}5 & -1 & 3 \\ 0 & -6 & -2 \\ 0 & 0 & 5\end{array}\right]$. Is $A=$ diagonalizable?

- A. yes
- B. no
- C. none of the above

Problem 9. The eigenspace corresponding to a particular eigenvalue of A contains an infinite number of vectors.

- A. True
- B. False

Problem 10.

If the characteristic polynomial of $A=(\lambda+7)^{9}(\lambda-5)^{2}(\lambda+3)^{4}$, then the algebraic multiplicity of $\lambda=5$ is

- A. 0
- B. 1
-C. 2
- D. 3
- E. 0 or 1
- F. 0 or 2
- G. 1 or 2
- H. 0,1 , or 2
- I. $0,1,2$, or 3
- J. none of the above

Problem 11. Suppose the orthogonal projection of $\left[\begin{array}{c}92 \\ -1 \\ -6\end{array}\right]$ onto $\left[\begin{array}{c}1 \\ -4 \\ 2\end{array}\right]$ is $\left(z_{1}, z_{2}, z_{3}\right)$. Then $z_{1}=$

- A. -4
- B. -3
-C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

