me me ft-uiowa-math2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST

1. (1 pt) Library/TCNJ/TCNJ_LinearSystems/problem3.pg Give a geometric description of the following systems of equations

-16x + 16y =-16? 1. -12x + 12y= -12-28x + 28y-28=5x +7 *y* = ? 2. 5 v 2x= 2 7x+ 23y13 =5x+7 = y ? 3. 2 2x5y= 7*x* +23 y = 16 Correct Answers: • Three identical lines • Three lines intersecting at a single point • Three non-parallel lines with no common intersection 2. (1 pt) Library/TCNJ/TCNJ_MatrixEquations/problem4.pg 3 -3 4 -1 -3 -1 -1 and x =2 Let $A = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ -5 -4 ? 1. What does Ax mean? Correct Answers: • Linear combination of the columns of A 3. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.2.57.pg

Assume $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ spans \mathbb{R}^3 . Select the best statement.

- A. {**u**₁, **u**₂, **u**₃, **u**₄} spans \mathbb{R}^3 unless **u**₄ is a scalar multiple of another vector in the set.
- B. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ never spans \mathbb{R}^3 .
- C. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 unless \mathbf{u}_4 is the zero vector.
- D. There is no easy way to determine if $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 .
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ always spans \mathbb{R}^3 .
- F. none of the above

Solution: (*Instructor solution preview: show the student solution after due date.*)

SOLUTION

The span of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a subset of the span of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$, so $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ always spans \mathbb{R}^3 .

Correct Answers:

• E

4. (1 pt) UI/Fall14/lin_span.pg Let $A = \begin{bmatrix} 3 \\ -8 \\ -7 \end{bmatrix}$, $B = \begin{bmatrix} 3 \\ -11 \\ -9 \end{bmatrix}$, and $C = \begin{bmatrix} -3 \\ 5 \\ 5 \end{bmatrix}$.

Which of the following best describes the span of the above 3 vectors?

- A. 0-dimensional point in R^3
- B. 1-dimensional line in R^3
- C. 2-dimensional plane in R^3
- D. *R*³

Determine whether or not the three vectors listed above are linearly independent or linearly dependent.

- A. linearly dependent
- B. linearly independent

If they are linearly dependent, determine a non-trivial linear relation. Otherwise, if the vectors are linearly independent, enter 0's for the coefficients, since that relationship **always** holds.

$$A + B + C = 0.$$
Correct Answers:

• C

• A

• 2; -1; 1

5. (1 pt) local/Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-/3.pg

Check the true statements below:

- A. The columns of an invertible *n* × *n* matrix form a basis for ℝⁿ.
- B. If *B* is an echelon form of a matrix *A*, then the pivot columns of *B* form a basis for *ColA*.
- C. The column space of a matrix *A* is the set of solutions of *Ax* = *b*.
- D. If $H = Span\{b_1, ..., b_p\}$, then $\{b_1, ..., b_p\}$ is a basis for H.
- E. A basis is a spanning set that is as large as possible.

Correct Answers:

• A

6. (1 pt) local/Library/UI/4.1.23.pg

Find the null space for $A = \begin{bmatrix} 1 & 0 & -7 \\ 0 & 1 & -4 \end{bmatrix}$. What is null(*A*)?

• D. span
$$\left\{ \begin{bmatrix} +4\\1 \end{bmatrix} \right\}$$

• E. span $\left\{ \begin{bmatrix} +4\\+7\\1 \end{bmatrix} \right\}$

• F. span
$$\left\{ \begin{bmatrix} +7\\ +4 \end{bmatrix} \right\}$$

• H. none of the above

Solution: (*Instructor solution preview: show the student solution after due date.*)

SOLUTION

A is row reduced. The basis of the null space has one element for each column without a leading one in the row reduced matrix.

Thus $A\mathbf{x} = \mathbf{0}$ has a one dimentional null space,

and thus, null(A) is the subspace generated by $\begin{bmatrix} 1-7\\ 1-4\\ 1 \end{bmatrix}$.

Correct Answers:

• D

7. (1 pt) local/Library/UI/Fall14/HW7_12.pg

Suppose that A is a 8×9 matrix which has a null space of dimension 5. The rank of A=

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2 • H. 3
- I. 4
- 1.4
- J. none of the above

Solution: (*Instructor solution preview: show the student solution after due date.*)

SOLUTION

Using the Rank-Nullity theorem, if the dimensions of A is n x m, rank(A) = m - nullity(A) = 9 - 5 = 4

Correct Answers:

• I

8.	(1	pt) lo	cal/Libra	ary/UI/Fall	14/HW8	5.pg

Find the determinant of the matrix $A = \begin{bmatrix} -5 & 0 & 0 & 0 \\ 7 & 1 & 0 & 0 \\ -8 & 7 & 2 & 0 \\ -6 & 8 & 1 & -6 \end{bmatrix}.$

 $\det(\bar{A}) =$

- A. -400
- B. -360
- C. -288
- D. -120
- E. 0
- F. 120
- G. 60
- H. 240I. 360
- J. 400
- K. None of those above

Correct Answers:

• G

If A is an $m \times n$ matrix and if the equation Ax = b is inconsistent for some b in \mathbb{R}^m , then A cannot have a pivot position in every row.

- A. True
- B. False

Correct Answers:

• A

If the equation Ax = b is inconsistent, then b is not in the set spanned by the columns of A.

- A. True
- B. False

Correct Answers:

• A

11. (1 pt) local/Library/UI/Fall14/volume1.pg

F	Find the	e v	olum	e of the	e parall	elepiped	determined	by	vectors
	-5		0		□ -3 □				
	0	,	2	, and	5				
	-3		0		2				

- A. 38
- B. -5
- C. -4
- D. -2
- E. -1
- F. 0
- G. 1
- H. 3
- I. 5
- J. 7

• K. None of those above

Correct Answers:

• A

Suppose $A\vec{x} = \vec{0}$ has an infinite number of solutions, then given a vector \vec{b} of the appropriate dimension, $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Correct Answers:

• E

Suppose A is a square matrix and $A\vec{x} = \vec{0}$ has an infinite number of solutions, then given a vector \vec{b} of the appropriate dimension, $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Correct Answers:

• E

14. (1 pt) local/Library/UI/problem7.pg

A and B are $n \times n$ matrices.

Adding a multiple of one row to another does not affect the determinant of a matrix.

- A. True
- B. False

If the columns of A are linearly dependent, then det A = 0.

- A. True
- B. False

det(A+B) = detA + detB.

- A. True
- B. False

Correct Answers:

- A
- A • B
- ٠

The vector \vec{b} is in *ColA* if and only if $A\vec{v} = \vec{b}$ has a solution

- A. True
- B. False

Correct Answers:

• A

The vector \vec{v} is in *NulA* if and only if $A\vec{v} = \vec{0}$

- A. True
- B. False

Correct Answers:

• A

3

If $\vec{x_1}$ and $\vec{x_2}$ are solutions to $A\vec{x} = \vec{0}$, then $5\vec{x_1} + 4\vec{x_2}$ is also a solution to $A\vec{x} = \vec{0}$.

- A. True
- B. False

Hint: (*Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.*)

Is *NulA* a subspace? Is *NulA* closed under linear combinations? *Correct Answers:*

• A

If $\vec{x_1}$ and $\vec{x_2}$ are solutions to $A\vec{x} = \vec{b}$, then $-3\vec{x_1} + 9\vec{x_2}$ is also a solution to $A\vec{x} = \vec{b}$.

- A. True
- B. False

Hint: (*Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.*)

Is the solution set to $A\vec{x} = \vec{b}$ a subspace even when \vec{b} is not $\vec{0}$? Is the solution set to $A\vec{x} = \vec{b}$ closed under linear combinations even when \vec{b} is not $\vec{0}$?

Correct Answers:

• B

Find the area of the parallelogram determined by the vectors $\begin{bmatrix} -6\\ 4 \end{bmatrix}$ and $\begin{bmatrix} 4\\ -2 \end{bmatrix}$.

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. 5

Correct Answers:

• I

Suppose *A* is a 5 × 3 matrix. Then *nul A* is a subspace of R^k where k =

- A. -4
- B. -3
- C. -2
- D. -1 • E. 0
- F. 1
- G. 2

- H. 3
- I. 4
- J. none of the above

Correct Answers:

• Н

Suppose *A* is a 4 \times 7 matrix. Then *col A* is a subspace of R^k where k =

- A. -4
- B. -3
- C. -2
- D. -1
 E. 0
- E. 0
- G. 2
- H. 3
- I.4
- J. none of the above
- Correct Answers:

22. (1 pt) Library/Rochester/setLinearAlgebra4InverseMatrix-/ur_la_4_2.pg

The matrix $\begin{bmatrix} 8 & 1 \\ 9 & k \end{bmatrix}$ is invertible if and only if $k \neq _$. *Correct Answers:* • 1.125

23. (1 pt) Library/Rochester/setLinearAlgebra9Dependence-/ur_la_9_7.pg

The vectors

$$v = \begin{bmatrix} -4\\11\\-10 \end{bmatrix}$$
, $u = \begin{bmatrix} 2\\-4\\9+k \end{bmatrix}$, and $w = \begin{bmatrix} 2\\-5\\4 \end{bmatrix}$.
are linearly independent if and only if $k \neq$ _____.

Correct Answers:

24. (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms-/ur_la_23_2.pg

Find the eigenvalues of the matrix

$$M = \left[\begin{array}{cc} 5 & 55\\ 55 & 5 \end{array} \right].$$

Enter the two eigenvalues, separated by a comma:

Classify the quadratic form $Q(x) = x^T A x$:

- A. Q(x) is indefinite
- B. Q(x) is positive definite
- 4

- C. Q(x) is negative semidefinite
- D. Q(x) is negative definite

• E. Q(x) is positive semidefinite Correct Answers:

• -50, 60

• A

25. (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms-/ur_la_23_3.pg

The matrix -1.5 0 -2.5 -1.5 -2.5 0 A =0 0 2 has three distinct eigenvalues, $\lambda_1 < \lambda_2 < \lambda_3$, $\lambda_1 = \underline{\quad},$ $\lambda_2 =$ ____, $\lambda_3 =$ ____.

Classify the quadratic form $Q(x) = x^T A x$:

- A. Q(x) is negative definite
- B. Q(x) is positive semidefinite
- C. Q(x) is negative semidefinite
- D. Q(x) is positive definite
- E. Q(x) is indefinite

Correct Answers:

- -4
- -1
- 2
- E

26. (1 pt) Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-/problem5.pg

	1		1		1
Let W_1 be the set:	0	,	1	,	1
	0		0		1

Determine if W_1 is a basis for \mathbb{R}^3 and check the correct answer(s) below.

- A. W_1 is not a basis because it does not span \mathbb{R}^3 .
- B. W_1 is not a basis because it is linearly dependent.
- C. W_1 is a basis.

Let W_2 be the set: $\begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}$.

Determine if W_2 is a basis for \mathbb{R}^3 and check the correct answer(s) below.

- A. W_2 is not a basis because it does not span \mathbb{R}^3 .
- B. W_2 is not a basis because it is linearly dependent.
- C. W_2 is a basis.

Correct Answers:

- C
- AB

27. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.3.42.pg

Let *A* be a matrix with more columns than rows. Select the best statement.

- A. The columns of A could be either linearly dependent or linearly independent depending on the case.
- B. The columns of A are linearly independent, as long as they does not include the zero vector.
- C. The columns of A are linearly independent, as long as no column is a scalar multiple of another column in A
- D. The columns of A must be linearly dependent.
- E. none of the above

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

Since there are more columns than rows, when we row reduce the matrix not all columns can have a leading 1.

The columns of A must be linearly dependent.

Correct Answers:

• D

28. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.3.46.pg

Let $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be a linearly dependent set of vectors. Select the best statement.

- A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is a linearly independent set of vectors unless \mathbf{u}_4 is a linear combination of other vectors in the set.
- B. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- C. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is always a linearly dependent set of vectors.
- D. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is a linearly independent set of vectors unless $\mathbf{u}_4 = \mathbf{0}$.
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is always a linearly independent set of vectors.
- F. none of the above

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

If the zero vector is a nontrivial linear combination of a vectors in a smaller set, then it is also a nontrivial combination of vectors in a bigger set containing those vectors.

 $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is always a linearly dependent set of vectors. Correct Answers:

• C

29. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/2.3.47.pg

Let $\{u_1, u_2, u_3, u_4\}$ be a linearly independent set of vectors. Select the best statement.

- A. {**u**₁, **u**₂, **u**₃} is always a linearly independent set of vectors.
- B. {**u**₁, **u**₂, **u**₃} could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- C. {**u**₁, **u**₂, **u**₃} is never a linearly independent set of vectors.
- D. none of the above

Solution: (*Instructor solution preview: show the student solution after due date.*)

SOLUTION

If the zero vector cannot be written as a nontrivial linear combination of a vectors in a smaller set, then it is also not a nontrivial combination of vectors in a proper subset of those vectors.

 $\{u_1, u_2, u_3\}$ is always a linearly independent set of vectors. *Correct Answers:*

• A

30. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/4.1.27.pg

Find the null space for $A = \begin{bmatrix} 1 & 7 \\ 3 & 7 \\ -4 & -7 \end{bmatrix}$. What is null(A)?

- A. \mathbb{R}^3
- B. \mathbb{R}^2
- C. span $\left\{ \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$ • D. span $\left\{ \begin{bmatrix} 1\\3 \end{bmatrix} \right\}$
- E. span $\left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$

• F.
$$\left\{ \begin{bmatrix} 0\\0 \end{bmatrix} \right\}^{L}$$

• G. span
$$\left\{ \begin{bmatrix} -7\\1 \end{bmatrix} \right\}$$

- H. span $\left\{ \begin{bmatrix} 1 \\ \end{bmatrix} \right\}$
- I. none of the above

Solution: (*Instructor solution preview: show the student solution after due date.*)

SOLUTION

A is row reduces to $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$. The basis of the null space has

one element for each column without a leading one in the row reduced matrix.

Thus $A\mathbf{x} = \mathbf{0}$ has a zero dimentional null space,

and null(A) is the zero vector $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Correct Answers:

31. (1 pt) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4-/4.3.47.pg

Indicate whether the following statement is true or false.

[?]1. If A and B are equivalent matrices, then col(A) = col(B).

Solution: (*Instructor solution preview: show the student solution after due date.*)

SOLUTION:
FALSE. Consider
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 2 & 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 0 & 0 \end{bmatrix}$
Correct Answers:
• F

32. (1 pt) Library/maCalcDB/setLinearAlgebra3Matrices/ur_la_3_6.pg

If *A* and *B* are 3×2 matrices, and *C* is a 6×3 matrix, which of the following are defined?

A. AC
B. CA
C. C^T
D. A^TC^T
E. A + B
F. C + B

Correct Answers:

• BCDE

33. (1 pt) UI/DIAGtfproblem1.pg A, P and D are $n \times n$ matrices.

Check the true statements below:

- A. If A is invertible, then A is diagonalizable.
- B. A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.
- C. If A is diagonalizable, then A has n distinct eigenvalues.
- D. A is diagonalizable if A has n distinct eigenvectors.

- E. A is diagonalizable if A has n distinct linearly independent eigenvectors.
- F. If A is symmetric, then A is orthogonally diagonalizable.
- G. If A is diagonalizable, then A is invertible.
- H. If A is diagonalizable, then A is symmetric.
- I. A is diagonalizable if $A = PDP^{-1}$ for some diagonal matrix D and some invertible matrix P.
- J. If A is symmetric, then A is diagonalizable.
- K. If A is orthogonally diagonalizable, then A is symmetric.
- L. If there exists a basis for \mathbb{R}^n consisting entirely of eigenvectors of A, then A is diagonalizable.
- M. If AP = PD, with D diagonal, then the nonzero columns of P must be eigenvectors of A.

Correct Answers:

• EFIJKLM

34. (1 pt) UI/Fall14/lin_span2.pg

Which of the following sets of vectors are linearly independent?

• F.	$\left[\begin{array}{c} -9\\6\end{array}\right]$, -8 -2],[-3 -7
Correct A	Inswers	:		
• A				
• AB				

35. (1 pt) UI/orthog.pg

All vectors and subspaces are in \mathbb{R}^n .

Check the true statements below:

- A. If A is symmetric, $A\mathbf{v} = r\mathbf{v}$, $A\mathbf{w} = s\mathbf{w}$ and $r \neq s$, then $\mathbf{v} \cdot \mathbf{w} = 0$.
- B. If $W = Span\{x_1, x_2, x_3\}$ and if $\{v_1, v_2, v_3\}$ is an orthonormal set in W, then $\{v_1, v_2, v_3\}$ is an orthonormal basis for W.
- C. If $A\mathbf{v} = r\mathbf{v}$ and $A\mathbf{w} = s\mathbf{w}$ and $r \neq s$, then $\mathbf{v} \cdot \mathbf{w} = 0$.
- D. If x is not in a subspace W, then x − proj_W(x) is not zero.
- E. If $\{v_1, v_2, v_3\}$ is an orthonormal set, then the set $\{v_1, v_2, v_3\}$ is linearly independent.
- F. In a QR factorization, say A = QR (when A has linearly independent columns), the columns of Q form an orthonormal basis for the column space of A.
- G. If v and w are both eigenvectors of A and if A is symmetric, then $\mathbf{v} \cdot \mathbf{w} = 0$.

Correct Answers:

• ABDEF

36. (1 pt) local/Library/UI/2.3.49.pg

Let \mathbf{u}_4 be a linear combination of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$. Select the best statement.

- A. {**u**₁, **u**₂, **u**₃, **u**₄} could be a linearly dependent or linearly independent set of vectors depending on the vectors chosen.
- B. {**u**₁, **u**₂, **u**₃, **u**₄} is never a linearly independent set of vectors.
- C. {**u**₁, **u**₂, **u**₃} is a linearly dependent set of vectors.
- D. {**u**₁, **u**₂, **u**₃, **u**₄} is always a linearly independent set of vectors.
- E. {**u**₁, **u**₂, **u**₃} is a linearly dependent set of vectors unless one of {**u**₁, **u**₂, **u**₃} is the zero vector.
- F. {**u**₁, **u**₂, **u**₃} is never a linearly dependent set of vectors.
- G. none of the above

Solution: (*Instructor solution preview: show the student solution after due date.*)

SOLUTION

7

If $\mathbf{u}_4 = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + a_3 \mathbf{u}_3$, then

 $0 = a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + a_3\mathbf{u}_3 - \mathbf{u}_4$

" $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is never a linearly independent set of vectors."

Correct Answers:

• B

37. (1 pt) local/Library/UI/Fall14/HW7_6.pg

If *A* is an $n \times n$ matrix and $\mathbf{b} \neq 0$ in \mathbb{R}^n , then consider the set of solutions to $A\mathbf{x} = \mathbf{b}$.

Select true or false for each statement.

The set contains the zero vector

- A. True
- B. False

This set is closed under vector addition

- A. True
- B. False

This set is closed under scalar multiplications

- A. True
- B. False

This set is a subspace

- A. True
- B. False

Solution: (*Instructor solution preview: show the student solution after due date.*)

SOLUTION

 $A\mathbf{0} = \mathbf{0} \neq \mathbf{b}$, so the zero vector is not in the set and it is not a subspace.

Correct Answers:

- B
- B
- B
- B

38. (1 pt) local/Library/UI/Fall14/HW7_11.pg Find all values of x for which rank(A) = 2.

	[1	1	0	7	1
A =	2	4	х	21	
	1	7	6	28	
x =	-				-
•	A4	1			
٠	B3	3			
٠	C2	2			
٠	D 1	1			
٠	E. 0				
٠	F. 1				
٠	G. 2				
•	H. 3				

- I. 4
- J. none of the above

Solution: (*Instructor solution preview: show the student solution after due date.*)

SOLUTION: Row reduce *A* to get:

7 1 1 0 7 1 1 0 2 4 21 2 *x* 7 x 0 1 7 6 28 0 6 6 21 Since two pivots are needed, x = 2Correct Answers:

• G

39. (1 pt) local/Library/UI/Fall14/HW8_7.pg

Suppose that a 4×4 matrix *A* with rows v_1 , v_2 , v_3 , and v_4 has determinant det*A* = 6. Find the following determinants:

$$B = \begin{bmatrix} v_1 \\ v_2 \\ 9v_3 \\ v_4 \end{bmatrix} \det(B) = \\ \bullet A. -18 \\ \bullet B. -15 \\ \bullet C. -12 \\ \bullet D. 54 \\ \bullet E. -9 \\ \bullet F. 0 \\ \bullet G. 9 \\ \bullet H. 12 \\ \bullet I. 15 \\ \bullet J. 18 \\ \bullet K. \text{ None of those above} \\ C = \begin{bmatrix} v_4 \\ v_3 \\ v_2 \\ v_1 \end{bmatrix} \det(C) = \\ \bullet A. -18 \\ \bullet B. 6 \\ \bullet C. -9 \\ \bullet D. -3 \\ \bullet E. 0 \\ \bullet F. 3 \\ \bullet G. 9 \\ \bullet H. 12 \\ \bullet I. 18 \\ \bullet J. \text{ None of those above} \\ D = \begin{bmatrix} v_1 + 3v_3 \\ v_2 \\ v_3 \\ v_4 \\ u_3 \\ v_4 \end{bmatrix} \\ \det(D) = \\ \bullet A. -18 \\ \bullet B. 6 \\ \bullet C. -9 \\ \bullet J. \text{ None of those above} \\ D = \begin{bmatrix} v_1 + 3v_3 \\ v_2 \\ v_3 \\ v_4 \\ u_3 \\ v_4 \end{bmatrix} \\ \det(D) = \\ \bullet A. -18 \\ \bullet B. 6 \\ \bullet C. -9 \\ \bullet D. -3 \\ \bullet E. 0 \\ \bullet F. 3 \\ \bullet B. 6 \\ \bullet C. -9 \\ \bullet D. -3 \\ \bullet E. 0 \\ \bullet F. 3 \\ \bullet B. 6 \\ \bullet C. -9 \\ \bullet D. -3 \\ \bullet E. 0 \\ \bullet F. 3 \\ \bullet B. 6 \\ \bullet C. -9 \\ \bullet D. -3 \\ \bullet E. 0 \\ \bullet F. 3 \\ \bullet B. 6 \\ \bullet C. -9 \\ \bullet D. -3 \\ \bullet E. 0 \\ \bullet F. 3 \\ \bullet B. 6 \\ \bullet C. -9 \\ \bullet D. -3 \\ \bullet E. 0 \\ \bullet F. 3 \\ \bullet B. 6 \\ \bullet C. -9 \\ \bullet D. -3 \\ \bullet E. 0 \\ \bullet F. 3 \\ \bullet B. 6 \\ \bullet C. -9 \\ \bullet D. -3 \\ \bullet E. 0 \\ \bullet F. 3 \\ \bullet B. 6 \\ \bullet C. -9 \\ \bullet D. -3 \\ \bullet E. 0 \\ \bullet F. 3 \\ \bullet D. -3 \\ \bullet E. 0 \\ \bullet F. 3 \\ \bullet D. -3 \\ \bullet E. 0 \\ \bullet F. 3 \\ \bullet D. -3 \\ \bullet D. -3 \\ \bullet E. 0 \\ \bullet F. 3 \\ \bullet D. -3 \\ \bullet D. \\ \bullet D. -3 \\ \bullet D. -3 \\ \bullet D. \\ \bullet D$$

8

- G. 9
- H. 12
- I. 18
- J. None of those above

Correct Answers:

- D
- B
- B

A vector *b* is a linear combination of the columns of a matrix *A* if and only if the equation Ax = b has at least one solution.

- A. True
- B. False

Correct Answers:

• A

Any linear combination of vectors can always be written in the form Ax for a suitable matrix A and vector x.

- A. True
- B. False

Correct Answers:

• A

42. (1 pt) local/Library/UI/Fall14/quiz2_9.pg

Suppose *A* is an invertible $n \times n$ matrix and *v* is an eigenvector of *A* with associated eigenvalue -5. Convince yourself that *v* is an eigenvector of the following matrices, and find the associated eigenvalues:

1. A^4 , eigenvalue =

- A. 16
- B. 81
- C. 125
- D. 216
- E. 1024
- F. 625
- G. 2000
- H. None of those above

2. A^{-1} , eigenvalue =

- A. -0.5
- B. -0.333
- C. -0.2
- D. -0.125
- E. 0
- F. 0.125

- G. 0.333
- H. 0.5
- I. None of those above
- 3. $A + 9I_n$, eigenvalue =
 - A. -8
 - B. -4
 - C. -5
 - D.0
 - E. 2
 - F. 4
 - G. 10
 - H. None of those above
- 4. 6A, eigenvalue =
 - A. -40
 - B. -36
 - C. -28
 - D.-30
 - E. -12
 - F. 0
 - G. 24
 - H. 36
 - I. None of those above

Correct Answers:

- F
- C
- F • D

43. (1 pt) local/Library/UI/Fall14/quiz2_10.pg

If $v_1 = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$

are eigenvectors of a matrix \vec{A} corresponding to the eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -4$, respectively, then

above

a.
$$A(v_1 + v_2) =$$

• A.	$\begin{bmatrix} -3 \\ 5 \end{bmatrix}$
• B.	$\begin{bmatrix} -2 \\ 4 \end{bmatrix}$
• C.	$\begin{bmatrix} -6 \\ 5 \end{bmatrix}$
• D.	10 6
• E.	$\begin{bmatrix} 12 \\ 4 \end{bmatrix}$
• F.	$\begin{bmatrix} 11 \\ 3 \end{bmatrix}$
• G. N	one of those

b.
$$A(3v_1) =$$

• H. None of those above

Correct Answers:

- F
- E

44. (1 pt) local/Library/UI/Fall14/quiz2_11.pg $\begin{bmatrix} 0\\-2\\-1 \end{bmatrix}, v_2 = \begin{bmatrix} -3\\1\\0 \end{bmatrix}, \text{ and } v_3 = \begin{bmatrix} 3\\0\\-3 \end{bmatrix}$ Let $v_1 =$

be eigenvectors of the matrix A which correspond to the eigenvalues $\lambda_1 = -3$, $\lambda_2 = 2$, and $\lambda_3 = 4$, respectively, and let 3 5 v =-4

Express v as a linear combination of v_1 , v_2 , and v_3 , and find Av.

1. If $v = c_1v_1 + c_2v_2 + c_3v_3$, then $(c_1, c_2, c_3) =$

- A. (1,2,2)
- B. (-3,2,4)
- C. (-4,7,3)
- D. (-2,1,2)
- E. (0,1,2)
- F. (4,-1,5)
- G. None of above

2. Av =

Correct Answers:

• D • E

Suppose a coefficient matrix A contains a pivot in every row. Then $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Correct Answers:

• F

Suppose a coefficient matrix A contains a pivot in every column. Then $A\vec{x} = \vec{b}$ has

- A. No solution
- B. Unique solution
- C. Infinitely many solutions
- D. at most one solution
- E. either no solution or an infinite number of solutions
- F. either a unique solution or an infinite number of solutions
- G. no solution, a unique solution or an infinite number of solutions, depending on the system of equations
- H. none of the above

Correct Answers:

• D

47. (1 pt) local/Library/UI/MatrixAlgebra/Euclidean/2.3.43.pg

Let *A* be a matrix with linearly independent columns. Select the best statement.

- A. The equation $A\mathbf{x} = \mathbf{0}$ never has nontrivial solutions.
- B. The equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions precisely when it is a square matrix.
- C. There is insufficient information to determine if such an equation has nontrivial solutions.
- D. The equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions precisely when it has more columns than rows.
- E. The equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions precisely when it has more rows than columns.
- F. The equation $A\mathbf{x} = \mathbf{0}$ always has nontrivial solutions.
- G. none of the above

Solution: (*Instructor solution preview: show the student solution after due date.*)

SOLUTION

The linear independence of the columns does not change with row reduction. Since the columns are linearly independent, after row reduction, each column contains a leading 1. We get nontrivial solutions when we have columns without a leading 1 in the row reduced matrix.

The equation $A\mathbf{x} = \mathbf{0}$ never has nontrivial solutions. *Correct Answers:*

• A

48. (1 pt) local/Library/UI/eigenTF.pg

A is $n \times n$ an matrices.

Check the true statements below:

- A. 0 is an eigenvalue of A if and only if Ax = 0 has a nonzero solution
- B. 0 can never be an eigenvalue of *A*.
- C. The vector **0** is an eigenvector of *A* if and only if det(*A*) = 0
- D. The vector **0** can never be an eigenvector of A
- E. There are an infinite number of eigenvectors that correspond to a particular eigenvalue of *A*.
- F. 0 is an eigenvalue of A if and only if the columns of A are linearly dependent.
- G. 0 is an eigenvalue of A if and only if det(A) = 0
- H. A will have at most *n* eigenvalues.
- I. The eigenspace corresponding to a particular eigenvalue of *A* contains an infinite number of vectors.
- J. A will have at most *n* eigenvectors.
- K. The vector **0** is an eigenvector of *A* if and only if the columns of *A* are linearly dependent.
- L. The vector **0** is an eigenvector of A if and only if Ax = 0 has a nonzero solution

• M. 0 is an eigenvalue of A if and only if Ax = 0 has an infinite number of solutions

Correct Answers:

• ADEFGHIM

If $\vec{v_1}$ and $\vec{v_2}$ are eigenvectors of *A* corresponding to eigenvalue λ_0 , then $6\vec{v_1} + 8\vec{v_2}$ is also an eigenvector of *A* corresponding to eigenvalue λ_0 when $6\vec{v_1} + 8\vec{v_2}$ is not $\vec{0}$.

- A. True
- B. False

Hint: (*Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.*)

Is an eigenspace a subspace? Is an eigenspace closed under linear combinations?

Also, is $6\vec{v_1} + 8\vec{v_2}$ nonzero?

Correct Answers:

• A

Use Cramer's rule to solve the following system of equations for x:

$$4x - 2y = -14$$
$$-1x + 1y = 4$$

•	A4	
•	B3	

- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. none of the above

Correct Answers:

• B Let $A = \begin{bmatrix} 3 & -9 & -4 \\ 0 & 7 & 5 \\ 0 & 0 & 3 \end{bmatrix}$. Is A =diagonalizable?

• A. yes

• B. no

• C. none of the above

Solution: (*Instructor solution preview: show the student solution after due date.*)

SOLUTION

Note that since the matrix is triangular, the eigenvalues are the diagonal elements 3 and 7. Since A is a 3 x 3 matrix, we need 3 linearly independent eigenvectors. Since 7 has algebraic multiplicity 1, it has geometric multiplicity 1 (the dimension of

its eigenspace is 1). Thus we can only use one eigenvector from the eigenspace corresponding to eigenvalue 7 to form *P*.

Thus we need 2 linearly independent eigenvectors from the eigenspace corresponding to the other eigenvalue 3. The eigenvalue 3 has algebraic multiplicity 2. Let E = dimension of the eigenspace corresponding eigenvalue 3. Then $1 \le E \le 2$. But we can easily see that the Nullspace of A - 3I has dimension 1.

Thus we do not have enough linearly independent eigenvectors to form P. Hence A is not diagonalizable.

Correct Answers:

• B Let $A = \begin{bmatrix} -5 & -18 & -9 \\ 0 & 1 & 3 \\ 0 & 0 & -5 \end{bmatrix}$. Is A = diagonalizable?

- A. yes
- B. no
- C. none of the above

Solution: (*Instructor solution preview: show the student solution after due date.*)

SOLUTION

Note that since the matrix is triangular, the eigenvalues are the diagonal elements -5 and 1. Since A is a 3 x 3 matrix, we need 3 linearly independent eigenvectors. Since 1 has algebraic multiplicity 1, it has geometric multiplicity 1 (the dimension of its eigenspace is 1). Thus we can only use one eigenvector from the eigenspace corresponding to eigenvalue 1 to form P.

Thus we need 2 linearly independent eigenvectors from the eigenspace corresponding to the other eigenvalue -5. The eigenvalue -5 has algebraic multiplicity 2. Let E = dimension of the eigenspace corresponding eigenvalue -5. Then $1 \le E \le 2$. But we can easily see that the Nullspace of A + 5I has dimension 2.

Thus we have 3 linearly independent eigenvectors which we can use to form the square matrix *P*. Hence *A* is diagonalizable. *Correct Answers:*

• A			• A4 • B3
$\operatorname{Let} A =$	3.55384615384615 3.13846153846154 6.46153846153846	-0.138461538461538 2.21538461538462 -1.61538461538462	$\begin{array}{c} \hline & & & & \\ \hline & & & \\ 2.15604395604396 \\ -4.90549450549450549451 \\ -3.50769230769231 \\ \hline \end{array}$

and let
$$P = \begin{bmatrix} -1 & 9 & 5 \\ -4 & -2 & -7 \\ 0 & 7 & -7 \end{bmatrix}$$
.

Suppose $A = PDP^{-1}$. Then if d_{ii} are the diagonal entries of $D, d_{11} =$,

- A. -4
- B. -3
- C. -2 • D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. 5

Hint: (Instructor hint preview: show the student hint after 0 attempts. The current number of attempts is 0.) Use definition of eigenvalue since you know an eigenvector corresponding to eigenvalue d_{11} .

Correct Answers:

• H

Calculate the determinant o	of [2.555	555555 5	55556	$\begin{bmatrix} 5\\9 \end{bmatrix}.$	
 A4 B3 C2 D1 E. 0 F. 1 G. 2 H. 3 I. 4 J. 5 						
Correct Answers:						
Suppose $A\begin{bmatrix} 5\\4\\-1\end{bmatrix} = \begin{bmatrix} -1\\-1\end{bmatrix}$	-10 -8 2]. T	hen an	eigenva	lue of	A
• A4 • B3 • C2						

is

٠	G. 2
•	Н. 3
٠	I. 4
•	J. none of the above
Corre	ect Answers:
٠	С

Suppose u and v are eigenvectors of A with eigenvalue 2 and w is an eigenvector of A with eigenvalue 3. Determine which of the following are eigenvectors of A and their corresponding eigenvalues.

(a.) If 4v an eigenvector of A, determine its eigenvalue. Else state it is not an eigenvector of A.

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4
- J. 4v need not be an eigenvector of A

(b.) If 7u + 4v an eigenvector of A, determine its eigenvalue. Else state it is not an eigenvector of A.

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1 • G. 2
- H. 3
- I. 4
- J. 7u + 4v need not be an eigenvector of A

(c.) If 7u + 4w an eigenvector of A, determine its eigenvalue. Else state it is not an eigenvector of A.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

- A. -4
- B. -3
- C. -2
- D. -1
- E. 0
- F. 1
- G. 2
- H. 3
- I. 4

• J. 7u + 4w need not be an eigenvector of A

Correct Answers:

- G
- G
- J

If the characteristic polynomial of $A = (\lambda + 6)^{1} (\lambda - 7)^{2} (\lambda + 6)^{2}$, then the algebraic multiplicity of $\lambda = 7$ is

- A.0
- B. 1
- C. 2
- D. 3
- E. 0 or 1
- F. 0 or 2
- G. 1 or 2
- H. 0, 1, or 2
- I. 0, 1, 2, or 3
- J. none of the above

Correct Answers:

```
• C
```

If the characteristic polynomial of $A = (\lambda - 4)^5 (\lambda + 3)^2 (\lambda - 1)^8$, then the geometric multiplicity of $\lambda = -3$ is

- A. 0
- B. 1
- C.2
- D.3
- E. 0 or 1
- F. 0 or 2
- G. 1 or 2
- H. 0, 1, or 2
- I. 0, 1, 2, or 3
- J. none of the above

Correct Answers:

• G